
FORCE INST OF TECH HEIGHT-PATTERSON AFE OH SCHOOL OF
ENGINEERING 0 R HODGES DEC 87 AFIT/GE/ENG/B7D-25

UNCLRSSIFIED F/OG12/ NL

mhmmhhmmhhhml
mohhEEmhhmhhEI
mEmhEmhhEmhmhI

. ii. -___.,,

U lt1.6

1.,

}I

. ,.. , , - -. - ., ., -., ., .-.. - -,,-.,..- ,'.- " - w-% . - '., _

'•J-, 1FILE COPY

C) p

00

(OF

-- " - - "

IMAGE PROCESSING USING A

/ PARALLEL ARCHITECTURE

- THESIS

Billy R. Hodges
Captain, USAF

AFIT/GE/ENG/87D-25

DTIC
ELECTEf

* MAR 25 88
DEPARTMENT OF THE AIR FORCE

AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Bose, Ohio

8 Iwo 3
OncmeU "do d ms

4~~, t o1I I awumsLwe a" a~j a ~~ %~~r~

AFI£'/GE/ENG/87D-25

IMAGE PROCESSING USING A

PARALLEL ARCHITECTURE

THESIS

Billy R. Hodges
Captain, USAF

AFIT/GE/ENG/87D-25

DTIC

Approved for public release; distribution unlimited

a-i-

AFI f/GE/ENG/87D-25

IMAGE PROCESSING USING A

PARALLEL ARCHITECTURE

THESIS

Presented to the Faculty of the School of Engineering

of the Air Force Institute of Technology

Air University

In Partial Fulfillment of the

Requirements for the Degree of

Master of Science in Electrical Engineering

Acoession For
NTIS GRA&I

DTIC TAB
Unannounced [Q

Justifloati

Billy R. Hodges, B.S.E.E. By S
Captain, USAF Distribution/

Availability Codes
A va 71 and/o rDist Special

December 1987

Approved for public release; distribution unlimited

' .

Acknowledgements

First and foremost, I thank the Lord for giving me the

ability and the opportunity to undertake this thesis effort.

It has been a difficult time, but He has used it to

strengthen me both mentally and spiritually. I also wish to

express my thanks to Lt Col Walter Seward for placing before

me worthy goals for my thesis and for my career as an

officer. I am also gratefully to Maj Glenn Prescott and Dr.

Gary Lamont for their assistance. A special thanks goes to

Dr. Mathew Kabrisky for sharing his time and experience.

And finally, I thank my helpmate for being so.

Bill Hodges

iik

, 1

K

Table of Contents

Page

Acknowledgements...................

List of Fi'gures.......................v

Abstract..........................vi

I. Introduction......................1

Background.....................I
Thesis Problem...................7
Scope.......................7
Approach......................8
Materials and Equipment..............9
Presentation...................10

Ii. Review of the Literature................11

Overview.....................11
Parallel Processors....................11
Image Processing Algorithms.... 2

1l1. System Definition..................41

Design Requirements................41
Design Analysis.................43
System Definition................46
Summary....................53

IV. Detailed Design....................55

iPSC Hypercube.................55
System Implementation.............57
Host Program Interface.............65

V. Software Analysis..................67

Correctness Tests................67
Performance....................71
System Programmability 73
Image Processing Routines............74

VI. Conclusions and Recommendations...........76

Conclusions......................76
Recommendations for Further Work..........77
Summary.....................82

Page

Appendix: User's Manual...................83

Bibliography........................102

Additional References...................105

Vita............................109

i v

List of Figures

Figure Page

1. Basic Computer Architecture..............12

2. Shared and Non-shared Memory Systems.........15

3. Complete Inter-connect Topology 18

4. Bus Oriented Topology.................19

5. Various Inter-connect Topologies...........20

6. Hypercubes of Various Dimensions...........21

7. A Graphical Development of the DFT..........26

8. Logarithmic Transform.................36

9. Block Diagram of a Multi-Image System 41

10. Structure of Image Processor Program.........47

42.

&FIT/GE/ENG/87D-25

Abstract

This study developed a set o± low level image processing

tools on a parallel computer that allows concurrent

processing of images in order to support development of

systems that use multiple images to gather information. The

parallel computer used is a collection of powerful processors

connected in a hypercube topology.

The software developed simplifies the interface between

the parallel computer and the applications developer by

providing a library of functions in the C programming

language. These functions are used to control "image

processor programs" that run independently in the parallel

computer and perform the image processing operations. The

complexities of the parallel processor are hidden and

replaced with a flexible structure specifically designed for

image processing. This structure provides a simplified

interface, but also acts as a framework to which additional

image processing operations can be added.

Timing measurements indicate that, in addition to

providing a unique applications development environment, the

set of tools offers a significant reduction in the time

required to perform some commonly used image processing

operations.

vI

IMAGE PROCESSING USING A PARALLEL ARCHITECTURE

I. Introduction

This thesis was prompted by the growing need for

sophisticated computer systems that can process large amounts

of image information in a limited amount of time. Developing

these systems will require new methodologies and equipment,

and as a first step toward developing these systems, a

structured set of image processing tools was implemented

using a parallel computer. More important than potential

speed increases, a parallel computer offers a whole new

development environment not possible with uni-processor

systems. Parallel computers avail researchers of a way to

create new techniques and a vehicle to implement these

techniques. It is intended that the tool set be used for

image analysis, expanded to include other tools, and in the

future be implemented as a part of a real-time image

processing system.

Back&round

As man has developed complex machines, more information

is needed for the machines' operation in control and

decision-making roles. In the past, information has been

input to the machines by human operators, but this is not

50 2Zalways a desirable solution. Humans can not react quickly

I|

enough in some situations or are subject to fatigue and loss

of concentration. Also, some machines operate in

environments where human presence is either not desirable or

not possible. An alternative to the "human in the link"

approach is to devise better techniques that use machine

sensor sets to gather the information needed for the

machine's operation. This will eliminate the need for a

human, using his sensor set, to provide information to the

machine.

It is said that humans receive as much as 75% of their

information about the world around them through vision

(10:1) with the rest coming from the other senses:

hearing, smell, touch, and taste. Given this vast amount of

information humans gather through their eyes, much research

has been dedicated to developing the capability for machines

to analyze images and obtain the same information as
N

humans. It is the hypothesis that there exists a feature set

contained within a scene that, if identified and isolated,

can be used by a machine to gather what is considered the

important information. While it is the intent to allow

machines to use image data, this does not necessarily imply

that the methods used in "machine vision" need be based on a

model of the human vision mechanism or, furthermore, even

remotely resemble the human visual system. It is true that

an understanding of the human visual system can aid in the

development of machine vision systems, but humans and

2

macnines are vastly different entities; what is meaningful

to the human system may not be useful at all to a machine

system. One could attempt to duplicate the human vision

system in order to produce a quality machine vision system

but, this seems a difficult way to solve the problem. An

alternative Is to find a method that will reduce a scene to

terms that can be meaningful in a model that is more readily

implementable in a machine. Another important difference

between the human system and the machine system is the type

of sensors available to each: the human system has the

visual light range and the other four senses available while

the machine can make use of other ranges of light, in

particular infared, as well as numerous other passive and

active sensors just as easily as it can use the visual range.

It is the use of multiple sensors that seems to hold the most

promise for machine vision systems.

One of the areas of machine vision research is digital

image processing. Here a scene is encoded in a digital

computer format, binary numbers, and then manipulated by the

use of special purpose computer hardware controlled by

firmware or, as in much research, by the use of a general

purpose digital computer. The digital computer allows great

flexibility in the design and implementation of machine

vision systems. Also, image processing techniques that are

difficult, expensive, or not possible by other means, such as

optical or analog processing, can be implemented using a

digital computer. The history of computer image processing

3 .

is relatively brief with many of the techniques being

developed, exploited, or applied in the last two decades

(10:1).

There are already a number of fields that have benefited

from machine vision in general and, of particular interest,

from digital image processing. In manufacturing, machine

vision has helped to improve some manufacturing processes and

increase product safety and reliability (12:15). One of

the simplest examples of machine vision is a photoelectric

machine guard that uses a set of light sol.rces and light

receivers to detect a human operator's stray limbs and stops

the operation of the machinery when any of the light paths

are interrupted (12:3). Another example, which uses more

complex techniques, is a system that scans a conveyor belt to

identify metal castings as one of six types and passes the

type and position information to a set of robot arms used to

sort the castings into skips (12:5-6). Other systems that

use machine vision in manufacturing include crack detection

in glass an:' metal parts, detection of skewed labels on

product containers, detection of blemished food products, and

inspection of sheet metal, photographic film, and other

products for surface defects (12:18-20). In the integrated

circuit (IC) industry machine vision is used in chip assembly

and defect detection (14:12). Also, there is a die-bond

machine which uses machine vision to isolate bonding pads and

connects select pairs of these pads with wire (14:12).

4

LAM~ VS~. -v% V.~ ~~* *~**

In military applications, image interpretation is

complicated by several factors. First, conditions such as

lighting and perspective can not be controlled as in

commercial applications. Second, it is often the case that

the objects that are being sought are purposefully hidden.

Thus, while techniques to successfully find and identify a

metal casting on a conveyer belt exist, techniques to find

tanks in a forest are proving more difficult. However, there

are a number of weapon system concepts that are being

developed that rely on image processing as a primary mode of

gathering information.

It has been proposed that the accuracy of strategic and

conventional missiles can be improved by supplementing

inertial systems with a guidance system that matches imagery

(4 along the flight-path and in the terminal area with a stored

database (22). Another autonomous target recognition (AIR)

technique that is being studied is using laser rangefinder

information to guide air-to-surface missiles to their targets

(7). A proposed guidance technique for anti-tank

munitions uses the large infared signatures of the tank's

exhaust system to identify targets in a scene (26).

Another notable system that is under development for fighter

aircraft is the LANTIRN system which is designed to provide

navigation and targeting capabilities in adverse conditions

using forward looking infared (FLIR) sensors. It is

projected that future guidance systems will require multiple

.j, sensors to deal with the more complex battlefield of tomorrow

5

r W Ir

(8:221). Approaches are being developed to integrate or

"fuse" information from electro-optical, FLIR, and

millimeter-wave (MMW) radar. The range of conditions under

which a system can perform may be extended by this

combination of sensors. For instance, one sensor may be able

to provide useful information when another can not, or it may

be possible to blend information from two sensors to achieve

a symbiotic effect. rhese new approaches are required for

the detection and identification of strategic targets, a task

which has been complicated by the increased mobility of those

targets and by camouflage, concealment, and deception (CCD)

techniques employed to increase their survivability (28:180).

One of the most serious drawbacks to digital image

processing (or digital computation in general) is the amount

of time required to process increasingly large amounts of

data. Using a single processor each picture element (or

pixel) of the entire image array must be operated on in turn.

The system performance trade-off then becomes one of a

greater numbers of pixels, giving more detail, for a longer

time required to complete the processing.

A complicating factor is, in many cases, the time

required to execute an algorithm does not grow linearly with

the number of pixels considered but rather, grows

proportional to the square or cube of the number of pixels.

This provides an even greater impetus to find methods which

increase the computational speed available in computers.

6

One method to decrease the required processing time is

the use of multiple computers, as opposed to the traditional

method of using a single computer. By using multi-processor

computer systems, a computational task can be divided into

its independent sub-tasks which can be performed

simultaneously thereby increasing the computational

capability applied to the task.

Thesis Problem

the AFIr Department of Electrical and Computer

Engineering has recently acquired two Intel iPSC hypercubes,

and is interested in developing an image processing

capability on these macnines. There are numerous algorithms

and operations used in image processing whose execution time

0can be significantly decreased by using these multi-processor

computers. This thesis effort resulted in the development of

a low-level image processing capability for the iPSC

hypercubes. Low-level operations used in image processing

include image retrieval and storage, image copying and

movement with the processing structure, elementary

mathematical functions, and other common operations used in

Image analysis including correlation. The software developed

was designed to fit into a larger hierarchical structure

which is presented in Chapter 3. This is to allow further

expansion at the lowest level as well as the development of

higher tiers in the hierarchy. This multi-level approach

7

allows for an orderly growth path for the project in further

thesis efforts.

Scope

The goal of this thesis effort was to develop a

fundamental image processing software package for a parallel

computer. Further, this package should allow, not only the

use of multiple processors for faster image processing, but

also allow multiple tasks to be performed concurrently.

Examples of these concurrent tasks include processing data

from two or more sensors (multi-sensor fusion) and processing

multiple images from one sensor separated In time (temporal

processing).

The image processing algorithms implemented were chosen

from the set of those most commonly used in the field. The

objective was not to develop image processing techniques but,

to develop a tool with which Image processing research can be

conducted. rhe hypercube was used in its native

configuration. That is, no attempt was made to map it into

t

another architecture such as a tree, mesh. or grid.

Particular attention was given to the view that the software

developed Is to be used for any ot a number of future

projects and, as such, flexibility is most Important.

At the present, machine vision and image processing are

in the beginning stages and consequently ver 'ew techn ques

beyond the lowest level are widely ebtatilshei in the field.

Because this is the case, sufficient documentation is

-=- ' " i i l l l |- !

I.

included to promote further development of the package while

maintaining the structure needed for a multi-processor,

multi-task tool.

Approach

The first task was to develop the software system

structure for the the project. Second, a 2 dimensional Fast

Fourier Transform (2D-FFT) routine written by Intel was

incorporated into this structure. Next, an image display

routine was developed on a Sun Microsystems workstation so

that the input and resultant images could be displayed.

Then, the bulk of the image processing routines were written

on the hypercube and finally, a portion of the image

processing routines was moved to run on the Sun workstation

Orather than the Intel host computer by using a "remote-

hosting" software package written by Oakridge National Labs.

Materials and Equipment

Two Intel iPSC hypercube computers were used to develop

the image processing routines. The hypercubes consist of two

primary parts: the host computer and the cube. The host

computer is a Xenix based multi-user, multitasking computer.

It is used to edit and compile all software for it and the

cube. The cube is a collection of 2N processors, where N is

1 to 7, arranged in a hypercube configuration which, under

the present operating system, is viewed as a system resource

that is allocated to one user at a time.

9

t r" % ~

A Sun Microsystems workstation is used to run the host

software that activates the cube image processing routines

and to display the images. The Sun workstation has excellent

graphics capability, a multi-window environment and runs the

Unix operating system. This combination makes it an

excellent vehicle for future projects ranging from an

interactive image processing workstation to an expert system

based image analysis package. In each application the

hypercube can be used to run multiple computationally

intensive tasks with software on the Sun providing display,

control, and decision-making or supervisory capabilities.

Presentation

Chapter 2 presents an explanation of the image

processing algorithms implemented along with some

introductory material on parallel processing. The next

chapter presents the system requirements, design analysis,

and a system definition. The fourth chapter outlines the

detailed design, coding, and testing of the software.

Chapter 5 presents an analysis of the effectiveness of the

software developed and the last chapter covers some

conclusions and recommendations for further study. The

Appendix is a user's manual that details how to use the image

processing software developed during this thesis.

10

II. Review of the Literature

Overview

A potential way of decreasing the amount of time

required to complete a processing task is through the use of

parallel processing. As mentioned in Chapter 1, image

processing is one of the applications that can benefit from

this emerging technology.

The fundamentals of parallel processors are presented

here to provide a background for programming a parallel

processor. Next, a general introduction to the field of

image processing is given including a development of the

algorithms selected to be implemented.

Parallel Processors

Since the first electronic computer, ENIAC, was built in

1946 typical electronic computers have had the basic

structure shown in Figure 1. rhis architecture, known as the

von Neumann architecture, is described by Baer (3:4) as

consisting of the following five basic parts: 1) the input

receives data and instructions from the user, 2) the memory

stores the instructions (program), data, and any results, 3)

the arithmetic and logic unit (ALU) performs all arithmetical

and logic operations on the data, 4) the control unit

retrieves and executes instructions from the memory and 5)

the output transmits resulting data to the user. As a

program is running, the control unit fetches the next

11
- - -- - -- ---- -

5&fa

'WI
F--------CONTROL----------------- I

r-

I I I

o ntr II flo I-I

D tafinstrucitonflow - ',

Figure 1. Basic Computer Architecture (3:5)

instruction from memory, decodes the instruction, and then

either activates the input, the output, or the ALU. This

cycle continues until the program is complete.

It has been estimated that the maximum theoretical

computation rate for computers built around this single

processor arrangement is about 3 billion floating point

operations per second (3 Giga-FLOPS) (27:46). This limit

is imposed by the laws of physics which state that

information can not be transmitted faster than the speed of

light. In practice, today's peak computation rates for these

.OV

12%

'.4.

%
~~~~~~*~~~-J -* - -~4 ~* -~1 - -~ % ~ j%% i V



types of computers are two or three orders of magnitude less.

While there is still much processing capability still to be

gained in theory, practical limits such as impurities in

materials are hampering further increases. If multiple

copies of these single processors were coordinated to work on

parts of a computation In parallel, a reduction in processing

time over that of a single processor computation time can, in

many cases, be achieved.

The term "parallel processor" is used to describe a

number of different computer architectures that contain more

than one processor. Baer (3:491-494) presents Flynn's

taxonomy as one way of classifying the various computer

architectures.

Flynn's Taxonomy. Around 1966 Flynn devised a method of

classifying computer architectures based upon number of data

streams and the number of instruction streams. Each of these

is further classified as either single or multiple. Thus,

there are four categories under Flynn's classification

scheme:

Single Instruction Single Data (SISD)
Single Instruction Multiple Data (SIMD)
Multiple Instruction Single Data (MISD)
Multiple Instruction Multiple Data (MIMD)

Single Instruction-Single Data. Most computers

used today are categorized as SISD. Here a single

instruction stream is used by the processor to operate on a

data set.



Single Instruction-Multiple Data. An SIMD computer

is composed of a number of processors and a controlling unit.

The controlling unit feeds instructions to all the processors

and they execute the instructions on their respective data

sets at the same time. Thus, all processors are synchronized

(executing in a lock-step fashion), performing the same

operations on their data. An example of an SIMD computer is

an array processor, which performs simultaneous arithmetic

operations on one-dimensional vectors that can have thousands

of elements. This type of parallel processing is used in the

Cray supercomputers.

Multiple Instruction-Single Data. Presently, there

are few examples of this architecture. Here multiple

processors apply differing instructions on the same data

stream.

Multiple Instruction-Multiple Data. The MIND

architecture differs from the SIMD in that each processor

operates asynchronous to all other processors. Each

processor has its own instruction stream and may perform

different tasks than all of its neighboring processors.

MIND Architectures. There are several characteristics

that help to further distinguish parallel computers in the

MIND category.

Memory. The first distinguishing characteristic

among MIND machines is whether all processors share a common

memory or If each of the processors has its own memory (see

Figure 2). The "shared-memory" computer has the advantage

14



Memory Memory

CceCache Processor Processor

an t r c o n n a c i o n S s e

Figure 2. Shared and Non-shared Memory Systems (1:32)

that data commonly used by all processors is available in one

place. This saves storage space by avoiding replication as

' I 5

in multiple memory systems and it also simplifies the problem

of insuring that all processors have access to the most

recent values of the data. These systems are referred to as

"tightly coupled" because of their high degree of

Interdependency. The shared memory system does have some

serious drawbacks. First is the problem of devising a method

to allow the multiple processors access to the same memory.

While dual-port memories do exist, they are significantly

15

I'"' '" I I'"' '"
1 / ""'°""' °" "'1

place.9 Thissave stoag spac by'~. avoin replication as



more expensive than memories used in the non-shared memory

computers and even then only allow access tor two processors.

For larger numbers of processors a memory access multiplexing

system must be used and this results in contention for access

to the memory. This becomes a severe bottleneck as the

number of processors accessing the memory increases (17:193).

In contrast to the shared memory computers, non-shared

memory computers are referred to as "loosely coupled"; all

processors have a local memory and communicate with each

other and the outside world via an interconnection system.

In these systems the memory access question, associated with

shared-memory systems, is traded for a communications

question. The system will use "messages" to communicate data

from one processor to another through the interconnection

system. The number of processors plays an important role in

determining the structure of this arrangement.

Processors. Another issue in the implementation of

a parallel computer is the number of processors used. Some

parallel computers use thousands of simple processors each

capable of a small number operations while others use a

smaller number of more powerful processors. The ideal

situation would be to have a larger number of the more

powerful processors, which has to date has proven

economically unattractive. The trade-off of numbers verses

capability gives rise to the concept of granularity.

16

..N



This can be thought of as either a measure of the
nominal length of messages sent from processor to
processor during execution of a problem, or the number
of instructions typically assigned to a processor in a
single procedure. Grain size is important, in that fine
grain applications for example, fit naturally on a
system of many small, less capable processors with very
fast communications paths between processors geared to
relatively short messages. Course grain applications,
those with thousands of instructions per procedure and
large interprocessor messages, would fit well on a
system of a few large processors and an interconnection
medium designed to transfer large blocks of data
[1:381.

Once the number of processors has been fixed, the way

processors are inter-connected, the topology, must be

established.

Topology. Finally, communications links must be

provided for data exchange in the non-shared memory MIMD

computer. The ideal case would be a complete interconnection

(see Figure 3) between all processors or "nodes". In this

interconnection topology each processor has a dedicated line

to all other processors. No delays are caused by the

unavailability of communications channels if each line is

bidirectional but, this comes at a cost. Each node must have

the memory and processing capability to receive and store

information from all its communications channels until the

data is needed. Also, the number of lines required for the

complete inter-connected topology of N nodes is N(N-l)/2.

For a relatively small network of 16 nodes, 120 bidirectional

data channels are needed. Therefore, for all but the

smallest numbers of nodes the complete interconnect is not a

feasible solution. An alternative, is a bus oriented

17

%.



Nodes

SI-Directional
Dta Lines

Figure 3. Complete Inter-connect Topology ;

architecture where all nodes are connected to a single high- .'

bandwidth communications channel (see Figure 4). This -

topology can be expanded to include large numbers of

processors without the rapid growth of data paths associated

.

with the complete inter-connect. However, as the number of

nodes grows the data bus may become very congested with data

traffic. So, both the complete interconnect and the uni-bus

architectures are limited in their usefulness to relatively

small networks of nodes.

There are numerous other multi-processor organizations

including mesh, pyramid, shuffle-exchange network, butterfly,

hypercube (cube-connected), and cube-connected cycles

18

- - - - - - - .d4----------------------- "S# P'S U'S 'V5 ~ . P '



NodesW

Bi-Directional High Speed
Data Lines Data Bus

?

Figure 4. Bus Oriented Topology

(21:25-29). Each of these structures differs in the

interconnection scheme used in providing inter-node

communications and have different strengths. Some of these

are illustrated in Figure 5. P

Hypercube. "One of the most powerful interconnection

methods is called the hypercube" (17:193). The hypercube

has been chosen by several computer manufactures as the

interconnection scheme for their commercially available

computers. These maufactures include Intel, Amatek, N Cube,

T41, and FPS (9:6). The number of processors or nodes

in a hypercube is often denoted by its "dimension." A

hypercube said to be of dimension N has 2 N processors. In

19

.......... *.



_.--.

Ring Mesh

Butterfly Tree

Figure 5. Various Inter-connection Topologies

constructing a cube of dimension N, each of the processors in S

connected to N other processors. Figure 6 illustrates

hypercubes of dimensions 0, 1, 2, 3, and 4. The connections

are assigned in the following manner: the nodes are assigned

labels equal to the binary representation of the numbers 0

through 2 N-I and every node Is connected to every other

node whose binary label differs in one bit position

(17:193). Thus, in a dimension 3 cube, the node labeled

100 is connected to nodes 000, 110, and 101. Palmer

20

'V



0 0---0

dO dl d2

d$ d4

Figure 6. Hypercubes of Various Dimensions

points out the following characteristics the of hypercube:

1) The number of directly connected neighbors to a
processors grows with the order of the hypercube.
Thus, a hypercube is more densely connected than a
mesh or tree.

2) The hypercube can be mapped onto most other useful
interconnection schemes.

3) The hypercube is recursive. A hypercube of order N
is made of two hypercubes of order N-1.

The first property of hypercubes allows a programmer to
ignore the optimum interconnection scheme for a given
problem and simply assume that his machine is maximally
interconnected. The second property, ... allows a
programmer to use almost any logical interconnection
that seems optimal for a given problem. And the third
property allows programs to be written so that they can
run on any order hypercube. Thus, the order of the
hypercube can be a parameter of the program. A
corollery to this is that an operating system that
manages a hypercube array can treat it as a large set
of logical hypercubes that can be allocated in sizes
requested by the users [17:1931.

21



In summary, while computers built around a single

processor have been traditionally used, physical limits are

beginning to taper off the performance increases that can be

realized. As an alternative, parallel computers may provide

additional performance increases for some applications. The

type of parallel computer that used be used for an

application appears, at this point, to depend greatly on the

nature of the problem.

Image Processing Algorithms

In the ideal case, a computation requiring an amount of

time, T, to complete on a serial computer would require a

time of TIN on a parallel computer with N processors. rhis

ideal speed-up is, in general, not achievable because most

computations cannot be divided into N independent

computations and thus necessitates the exchange of

intermediate results and prevents achieving the ideal speed-

up. However, performance gains can be achieved for many

algorithms. Because of large amounts of data used in image

processing, parallel processing is considered as a possible

answer to the performance needs in this field.

According to Hall (10:2), the field of computer image

processing today can be divided into five major areas:

enhancement, communications, reconstruction, segmentation,

and recognition. Image enhancement and restoration address

improving the quality of images for human use. Since the

measure of success is the subjective opinion of a human

22

= *%. '.'-.,'... , % %.. 'L- *': % % \" -, ,.. . f% € -""€€ € €. "



being, exactly what techniques provide the best results must

be determined through testing with humans over a period of

time. Reconstruction deals with recreating the form of a

three-dimensional object from two-dimensional images. One of

the more notable applications of reconstruction techniques is

computer tomography used in the medical field (24:615).

Image communication deals with the transmission

techniques used in the broader topic of digital

communications and human factors issues in image enhancement

and restoration. Image segmentation is a process that

involves breaking an image into meaningful components so that

objects, and relations between those objects, can be

identified. Image recognition deals witn the task of

identifying an object that has been previously "learned."

The following sections present some algorithms that have

been used in one or more of the five areas of image

processing. Ihe intent is to provide an understanding of the

algorithms and some of the applications that make use of .

those algorithms. There are, however, many applications that

make use of these techniques that are not discussed here.
I.

The algorithms were implemented for this thesis on the Intel

iPSC hypercube, a non-shared memory, large grain computer.

Some of the algorithms, such as the Fast Fourier Transform

require inter-node communications while others do not.

Fast Fourier Transform. The Fourier Transform is an

important analytical tool in linear systems analysis, antenna

23



W. 7 .772- 7 11 -. Z 7 .1 .M r- -

design, optics, probability theory, random processes, quantum

physics, and boundary-value analysis (5:7) as well as

image processing. As its name implies it is a transform: a

technique involving converting an expression to an equivalent

form, often to simplify analysis. In the case Fourier

Transform, the two forms involved are the time domain and the

frequency domain representations. Transform methods in

general are used in areas such as "sound and music analysis,

communications systems design, analysis of mechanical

vibrations, ocean wave analysis, statistics and many others"

(23:16). The logarithm is a simple example of a transform

method that can be used to avoid long division by taking the

logarithm of the two quantities, subtracting the two, and

taking the anti-logarithm of the result (5:2). In image

.09 processing the Fourier Transform is used to convert images to

their frequency representation for frequency domain

analysis. The Fourier Transform of a time domain function is

defined as

00

F (o)1=Jf (t)eJ 1dt

The reverse process, going from the frequency domain to the

time domain is tne Inverse Fourier Transform.

24



f Q) f~ JF((o)ejmt (2)

Similarly, the two dimensional Fourier Transform and its

inverse are defined as

F(u,v) = J f (xy)eJ2 n(u+vyldxdy (3)

and

Go 00

f (x,y) = f F(u,v)e2n(ux+vY)dudv (4) L.

where x and y are the spatial domain variables and u and v

are the frequency domain variables.

It has become convenient to compute the Discrete Fourier

Transform (DFL), the discrete-time version of the Fourier

Transform, with the advent of digital computers. Figure 7

illustrates the relation of the Fourier and Discrete Fourier

Transforms. Since digital computers can only store and

manipulate discrete quantities both the time domain and

frequency domain representation must be converted to discrete

representations. In Figure 7, step (a) shows a function h(t)

on the left and its Fourier Transform H(f) on the right. A S.

sampling function (b) will be used to sample h(t). In the

25

N Y JA



*; W -_$ I ht Hill f2

A,..)

I f

t h~tlgo~ll (ftI of

(dI l - I"

[0 0
(. TI To f

2T To21

hl( ot x 1 (t ) I (f). olf]Xlf)

Ait)f

Figure 7. A Graphical Development of the DFT (5:100)

time domain (a) will be multiplied by (b). This corresponds

to a correlation in the frequency domain. Next, the time

26



function is limited in time by multiplying It by (d). At V

this point the time domain representation of h(t) has been

converted to a form suitable for computer representation (e),

however, the frequency domain equivalent is still a

continuous function. As the final step (f) the frequency

domain representation is sampled just as the time domain

representation was. The final representation in (g) is a

discrete, time-limited, periodic version of the original

h( t).

Although the DFT has proven to be a useful tool, the

number of computations required for large problems is

prohibitive. In 1965, Cooley and Tukey published a paper

describing a method that substantially reduced the number of

computations required to compute the DFr (6:297). Along

with other similar methods proposed later, this method became P
P

known as the Fast Fourier Transform. Any of these operations

(the Fourier Transform, the DFT, or the FFT) can be applied

to a single dimension, such as a voltage level that varies
1P

with time, or to multiple dimensions as in image processing

where a two-dimensional representation of a scene is

considered. The DFT and it inverse are defined as

N-1 N
F (u)= f(n)e N O<_uN-1 (5)

and 5,

27

%U
_64



N-I ju 2irn
f (n) = F(u)e N On <N-I (6)

U =0

The two dimensional version of the DFT pair is

) N-1N-1 -j 2n(un+vm) 0u N-I
F(u-v) -N ,, f (n,m)e N-

n=m=O Ov<N-1 (7)

and

iN-IN- j2nt(un+vm)
f (n,m)= I F(u,v)e N

u=Ov=O O<_mN-1 (8)

The Cooley-Tukey method reduces the number of operations

from N2 to 2N1og2N (6:297) for a one-dimensional Fourier

Transform. This reduction is achieved by "decomposing the

computation of the discrete Fourier transform of a sequence

of length N into successively smaller discrete Fourier

transforms" (16:286). rhis decomposition of the Fourier

Transform is generally based on one of two properties of the

DFI computation: 1) sines and cosines are used and are

symmetric; and 2) periodicity of the complex quantities

involved in the computation (16:286). it is the second

property that Cooley and rukey used in their algorithm.

The periodicity of the DFf complex terms can be

exploited in either the time domain or the frequency domain

(2:14). The first method, decimation in time, splits the

input data into even and odd terms. The total transform is

28



obtained by taking the transform of the two series,

multiplying the second by a "twiddle" factor, and taking the

sum. This procedure can be applied at successive levels

until only two individual transform terms remain. The second

method, decimation in frequency, breaks the input data into

two halves. Again, this procedure is applied at successively

lower levels. "The FFT algorithm derives its efficiency by

replacing the computation of one large DFT with that of

several smaller DFTs" (15:86). The decimation in time and

the decimation in frequency algorithms both require the same

number of operations and a reordering of the output data if

the natural order is required. An alternative is to

preprocess the data such that the output is in its natural

order.

In the previous discussion the number of data points, N,

was required to be radix-2 or N=2t, where tl,2,3,... If N

is chosen as radix-4, Nf4t , further savings in computations

can be realized (15:93). This additional savings does come

at a cost: N must be chosen from a certain set of values (4,

16, 64, 256 ... for radix-4) and requires supplying zeros

for unused data locations, thereby effectively negating any

speed-up. However, variations on the FFT exist such that

"significant time savings can be obtained as long as N is

highly composite; that is, N f rlr 2 ... rm where ri is an

integer" (11:549).

29

.- *%



Most existing FFT algorithms have been implemented on

computers with one processor, a serial computer. If

additional processors are applied to solving the problem then

a reduction in the time required to compute the FFT can be

achieved. As early as 1968, the possibility of factoring the

FFT into independent computations for calculation on a

parallel computer was proposed (18:252). This variation of

the FFT was design for a hypothetical special-purpose

computer capable of vector addition and subtraction, a

specific reordering of data, and complex multiplication. As

computer technology has advanced and new computer

architectures (both parallel and serial) have been

implemented, a number of variations on the FFr have been

proposed. For example, some of these FFTs require that a

matrix be transposed while others do not. Which FFf

algorithm is best depends largely on the architecture of the

computer used in implementation.

The Fast Fourier Transform (FFT) is a computationally

efficient approach to calculating the Discrete Fourier

Transform (DFr). Reduction in the number of calculations is

achieved by taking advantage of the DFT's periodic

properties. The best way to segment the calculation depends

on the characteristics of the particular computer to be used.

These characteristics include the number of processors and

the inter-connection of multi-processor computers.

Convolution. The convolution integral is used in linear

systems analysis to determine the response of a linear shift

30

w .5, , w. ,*. 5 S * Y . . . . .. . . .



invariant (LSI) system to an input, given the system's

impulse response h(t). That is, a linear system can be

described completely by its impulse response. For the input

f(t), an LSI system with a impulse response h(t) produces

output

00

g(W) =jf ()h(t-x)dc (9)

In linear position invariant (LPI) optical systems, the

equivalent to the impulse response is the point-spread

function h(x,y): the response of the system to an impulse

point of light (10:33). Given an input f(x,y) the output

of the LPI optical system is

000

g(x,y) =J ff (a,P)h(x--a y-f-)ddP (10)

v.:

An alternative to computing the convolution integral, or

summation in the discrete case, is to use frequency domain

techniques. In the frequency domain the convolution integral

becomes 
,p

G(co) =F ((o)H (0) (1)

ON

31
'p



Thus, a system's response can be determined by taking the

.NInverse Fourier Transform of G.
VP

For discrete systems Oppenheim and Schafer present two

types of convolution using the DFT as a computation method

(16:115). The first is circular convolution. As illustrated

in the graphical development of the DFT (Figure 7), the
p

discrete time domain function is periodic with period N. If

the convolution summation for two functions is computed using

this representation, values from multiple periods will be

included in the sum. rhis result does not correspond to the

result that would be achieved for the continuous function

convolution. This leads to the need for the second type of

convolution, linear convolution. In order to isolate the

convolution summation from adjacent periods, each period must

be expanded to 2N with the last N values being equal to zero.

Thus, when the convolution summation is computed only values

from one period will be considered. So, the discrete two

dimensional convolution of two MxN arrays is

N-1M- I5x N-I
g(x,y) = I f (aP)h(x-ay-P) (12)

-O y<_M-1

However, if a function X that is to be convolved with another

function is limited in its size such that h(x,y) = 0, for

x > P and y > Q, the range of summation in Eq. 12 can be

reduced to

32

~~~~~~~***~~~~~~~~~ %. - ' . ~ ~ q~ ~ ~ j % ~ ~ i* -


P-1Q-1 O<._x!N-1
Sg(x,y) = f (a,)h(x-a,y-)

a=O PO O5y<_ M - 1 (13)

Therefore, convolving a limited size PxQ function (a

"kernel") with the larger NxM function can be reduced by the

factor (P'Q)/(N'M), and the summation may be more efficient

than using the DFT method. If the functions to be convolved

are distributed across the nodes of a parallel processor

large numbers of data transfers may 5e required. The

convolution of a PxQ kernel with an MxN function distributed

in strips of rows across L nodes will only require nearest

neighbor data swaps as long as

M > (P-) L =1,2,3,... (14)

L 2

For larger kernels data must be transferred across more

boundaries. this results in more memory usaz (to store the

common data transferred), more inter-node communications, and

hence a more complex programming task. Thus, the additional

overhead of inter-node communication may further reduce the

largest kernel size that can efficiently use the convolution

summation as opposed to the DFT method of computing the

convolution.

Correlation. The correlation integral is used to

measure the degree of similarity between two functions. For

33

two continuous one-dimensional functions the correlation is

"4v defined as

g(x) = (f (Mf2(x+T)dT (15)

For discrete functions the integral becomes the summation

N-I
g(n) = fh(m)f 2 (n+m) O<Sn<_N-I (16)

m=JJ

Expanding to two-dimensional functions the final form is

N-IN-1 0<_xNi- I
g(x,y) = . . fl(n,m)f2(n+x,m+y) (17)

n =Om=O _y<N -1

Note that the correlation differs from the convolution

summation (Eq. 12) only in the sign of the integration..f

variables in the second function. Since this is the case, P

the correlation can be computed in the frequency domain in p

the same way as the convolution. It can be shown that the

axis reversal of the function in the spatial domain is equal

to taking its complex conjugate in the frequency domain

(10:127). Thus,

34

°-,

.:.G (u,v) = F l(u,v) F2(u,v) (8

So, similar to the convolution the correlation can be

obtained by taking the Inverse Fourier Transform of the

result.

Image correlation is one of the two basic image matching

algorithms, feature matching being the other (22:12).

Histogram. The histogram h(n) is a discrete function

that represents the number of pixels at each intensity level

in an image. For an image with 8 bits of information there

are 28 = 256 intensity values. the histogram would have one

value to represent the number of pixels at each of these 256

levels. For an NxM image there are N'M pixels so

255Y, hi)=NM (19)

n=O

Scaling Transform. A simple way to increase the

contrast of an image whose histogram does not span the entire I

range of intensity levels is to scale it. For an image with

values in the range (m,M) but, whose histogram can lie within

(n,N) the scaling transform is

g (x,y) =[(x,y)-m]/(M-m)}[N-n]+n (20)

35 %

P6?-

UU

Logarithmic Transform. The log transform is another

useful contrast enhancement technique. Each pixel f(x,y) is

replaced with the value g(x,y) = log f(x,y). As show in

Figure 8 the values near fmax are compressed into a smaller

9

f1.n fM

"'
9 min

Figure 8. Logarithmic Transform

range while those near fmin are expanded into a larger range.

Note that varying fmin greatly eftects the amount of

expansion of the smaller values.

Histogram Equalization. Another contrast enhancement

technique is histogram equalization which eliminates spikes

in the histogram and provides a more uniform use of the range

of values. After the histogram h(n) of an image Is obtained,

36

the first step is to compute the "empirical distribution

Vfunction" (10:171).

n h(i)
pO(n) n MN 0:5n!-1 (21)

i =MN

The histogram equalization mapping m(n) is obtained by
.

scaling

m (n) = integer [p (n)I-.5] (22)

Each pixel of the image f(x,y) is mapped to a new intensity

value g(x,y) using m(n) as follows.

O .x:_N-1 (23

g(x,y) =m(f (x,)) (23)

9ltcnlng Transform. Hall presents a method of combining

i'ietes througn the use of a dotelling Transform (10:181).

:t tw, iaees are considered, a two dimensional histogram of

t e c,-occurent intensity levels, h(fl,f 2), can be formed.

r: t) is defined as the number of pixels that nave a value

t in the first image but, have a value f 2 in the second

image. This function indicates how closely the two images

match. If they are exactly the same then the only non-zero

vilues would lie In a straight line. For images that are not

37
% .t
V'S

the same, the Hotelling transform is used to determine the

best straight line fit to the distribution.

Interpolation. Sometimes it is useful to enlarge one

section of an image. A simple way to do this is by

replicating pixels. For example, a 2X magnification requires

each pixel be doubled in size in both the horizontal and

vertical directions. This method is simple to implement, but

the resulting images are grainy and not of much additional

use. A better technique is interpolation.

It is well known that a signal x(t) that is band-limited

with a maximum frequency f0 can be correctly reconstructed

from its sampled values as long as the samples were taken at

rate greater than or equal to 2fo, know as the Nyquist rate.

Therefore, it follows that any intermediate values could also6

be reconstructed from the samples. For example, from the N

samples of x(t) taken at 2fo, the 2N samples that would have

been obtained had x(t) been sampled at 4f o can be

reconstructed. Note that x(t) was confined to a maximum

frequency of f and no new information is add by the

interpolation. Interpolation by a factor L (L = 1,2,3,...)

is accomplished by placing (L-1) zeros between each original

sample value (up-sampling) and passing the resulting sample

stream through a digital low-pass filter. The output of the

low pass filter will contain the original values plus

interpolated values. For large amounts of data, in the case

38 %
'V

Z

of digital images it is beneficial to perform the filLering

in the frequency domain.

Summary

Traditionally, computers have used a single processor,

von Neumann architecture. However, as physical limitations

slow the rate of increase in computational capabilities other

solutions are being sought. One of the possible solutions is

parallel processing. There are various type of parallel

processor architectures but, one of the most versatile is the

hypercube. The hypercube has a moderate processor/channel

bandwidth ratio in comparison to other topologies and

maintains a moderate ratio as more processors are added. The

hypercube has several properties that make it a general

purpose architecture.

Digital image processing is a field that is beginning to

exercise the capabilities of parallel processors. Real-time

systems will require an Increased computational capability

and parallel computers may be the solution.

The image processing field can be broken into five

general areas: enhancement, communications, reconstruction,

segmentation, and recognition. Frequency domain analysis is

an important tool in each of these categories of image

processing as well as in many other fields. The development

of the Fast Fourier Transform (FFT) has made frequency domain

analysis practical by providing a fast digital equivalent to

the continuous Fourier Transform. The FFT can be used to

39

5% q . .V - '

compute convolutions, correlations, and to perform

interpolation and frequency domain filtering. Histogram

based techniques provide methods to perform contrast
enhancement as well as other operations such as segmentation.

,-;

o6*

A

40,

- | | li b - I " i

III. System Definition

Design Requirements

rhe overall goal in developing this software package was

to provide an environment for digital image processing

research. £he types of applications that were targeted for

implementation under this environment are real-time image r
processing on multiple image sets. This includes multi-

sensor fusion and temporal image processing. In both cases

the multiple images considered can be processed

simultaneously and then some control action taken or some

decision made based on the results. rhese types of systems

include all of the elements of simpler image processing

applications and was therefore used as a design

requirements goal. Figure 9 shows a block diagram

;h

SENSOR Interpretation

Integration
SENSOR Interpretation

;-'" II 1-1 =""Model ::

EN.S Interpretation"-,
SE. OR ; Model

Figure 9. Block Diagram of a Multi-Image System

'a.-.

41

, "-"-"" ," '.. - _- z- " " " " " - - " .-"" .-" -" - "" " ," " ""- " " '-" "- "", ". "" " - "-""". " , ,."" -" " "."" . -. " "-'-"" "', :".-'a..

. .A A A - - . -1 - . ~. ? * -. -. ! -. - . . .

representing a possible decomposition of the basic elements

of such a system. The system depicted uses one or more p

sensors as its input and may use a single image from each

We
sensor or a set of images separated in time to reach a

conclusion. Each image stream is processed based upon an

interpretation model specific to the type of sensor. The

results from the analysis of the image data is then combined

to arrive at a conclusion.

The large amounts of data involved in image processing

make implementing real-time systems difficult. First, high

bandwidth digital data channels must be used to collect the

data for processing and second, vast computational capability

must be available to process the data. In designing an a.

environment to develop such applications several desirable

characteristics should be noted.

First, the environment should be easy to understand and

easy to use. A tool can not be used in an effective way if

it is too complex to understand nor will it be used at all if

it is more cumbersome to use than present methods. Next, the

environment should be robust; it should be able to detect,

recover, and indicate errors induced by improper actions or

invalid data. The environment should also contain elements

that make it generally useful. That is, it should not be

designed for a specific sub-set of applications. Next, the

environment should be flexible. Digital image processing is

a relatively new field and most techniques today are ad hoc.

42

WJ

.ml

New methods are constantly being developed so the environment

should be flexible enough to be expanded to include these new

techniques. On the other hand, it should also be designed

such that it is possible to tailor out any unneeded overhead

once the application design has been established. Finally,

the environment should have a well-defined and consistent

interface. This will allow for continued up-grading to its

capabilities while maintaining compatibility. rhis will also

simplify efforts to include this environment into a larger

structure.

Design Analysis

One way to achieve ease of use and understanding is to

break the environment into modular components so that while
.w

developing an application, pieces can be added one at a time.

The elements of the application can be grouped at conceptual

levels allowing the developer to deal with only resonable

sized pieces at one time.

Figure 9 is representative of three phases: image

acquisition, image evaluation, and an integration of the

information derived from the evaluation. As depicted, the

data channels for image acquisition from the sensors are

independent so multiple parallel input channels should be

used to achieve the high bandwidth required to approach real-

time processing capability. The information evaluation stage

consists of multiple image interpretation models where each

will be designed to incorporate the techniques that are

43

appropriate for that type of sensor. Certain similarities

will exist between the different interpretation models since

certain fundamental processing techniques will be common. In

the last phase, operations will be carried out to relate the

pieces of information gathered from the sensor sources.

These pieces of information from the image interpretation

models may be in a variety of forms. One interpretation

model may have an entire image that has been altered as its

output while yet another interpretation model may produce

statistical information about the image that it processed.

Thus, research must determine first, what information can be

obtained from imaging systems and second how this information

can be integrated. At this highest conceptual level, objects

and their relations to one another will most likely be used

for symbolic processing. Both the image evaluation phase and

the image information integration phase for an application

will be composed of various levels of algorithms and

operations and, the image processing environment developed

should be capable of supporting all these elements for

research purposes.

The requirements set forth indicate a hierarchal

structure for the environment is needed. Furthermore, each

tier should have a limited well-defined set of capabilities

that are not replicated in other tiers. The basic elements

for an image processing research environment would include

image acquisition facilities, mass storage devices for image

data and results, ample computational resources, display

44

devices, and high bandwidth input-output channels to allow

Sdevelopment of real-time or near real-time applications. A

first step in realizing such an environment is implementing a

set of image processing "tools" to serve as the basic image

interpretation procedures. However, at this point in the

history of image processing there is much yet to be learned

"4.

and most methods of image interpretation, let alone image

information integratior, are those that have been tried and

have proven minimally useful and are not products of

mathematical analysis. Yet, certain low level mathematical

operations turn up in many of the methods developed thus far

and may, in the end, be a part of the methods that will be .

"The next section presents a software structure that willY

provide a set of low-level functions that can serve as a .

starting point for image interpretation and integration ,

research, and form the base of an environment for Image

processing research. The set of operations presented is not

comprehensive, but does permit the implementation of the

selected representative algorithms discussed in Chapter 2.

The set of operations can be expanded to include those needed e

for other techniques, such as statistical based methods or

conversely, the set can be reduced to form specialized image ..

processing programs. Then these programs of various '

specialties could be grouped and controlled by a higher level."

process to form, for example, an image interpretation program

45

.4

%

for FLIR images. A group of these image interpretation

programs could then in turn be controlled at yet another

higher level.

System Definition

A program to do low-level image processing, referred to

here as an "image processor program", can be decomposed into

three functional areas: a control module to translate calls

to the image processor program into a series of actions, an

input-output module for retrieval and storage of images and

results, and an operations module that contains the set of

low-level operations to be used for image processing. There

is also a set of data structures that are used to store data

from the outside world and are acted on by operations module.

rhe structure of this image processor program is illustrated

in Figure 10. This structure was chosen to facilitate

additions to the program in the four following areas. First,

it is anticipated that additional image storage and image

acquisition equipment may be added to the system. Identifying

the input-output functions for the image processor program as

a separate module allows for addition to or replacement of

this module. Next, the operations presented in Chapter 2

represent only a sample of the many being used in image

processing and the software will need to be expanded in the

future. This may also require additional data arrays. The

data arrays selected for this design were based on the

algorithms selected for implementation, but other algorithms

46

404

CL _ __ _ L 40

0)% -

r

may require more data storage. Finally, all of the above

changes would require modification of the control module so

it is identified as a separate component.

This structure should allow the program to evolve to

suit the needs of a wide variety of applications. The

following sections discuss each of the components of the

image processor program.

Control Module. The control module receives commands

from the input-output module and decodes them. Based on the

operation command it will activate one or more of the other

two modules to perform a task consisting of one or more

steps.

Input-Output Module. As indicated the input-output (1/0)

module is managed by the control module. Its function is to

pass commands to the control unit and, pass data to and from

the data structures of the image processor program.

Operations Module. A set of operations are defined for

the data arrays and each effects only certain arrays; each

operation is not defined for all arrays in the set. It

should be noted that in Figure 10 that no control flows from

the operations module to the control module. This is

indicative that no branching type operations are possible

since the commands are received by the image processor

program one at a time.

Data Arrays. The storage of the image processor

program is a set of data arrays that was chosen based upon

the data requirements of the image processing algorithms and

48

i.

operations presented in Chapter 2. This set was chosen to

permit operations on the original image data, operations on

the complex valued equivalent of the image data, or the

complex valued data from two images. This set can be

expanded as needed within memory constraints. The I data

array is NxN array of pixels used to store images where each

pixel is in the range 0 to (2 n_,), where n Is the fixed

number of data bits for the images. The H data array is a

array of size 1x2 n and whose values range from 0 to NN. The

I and H arrays are used for operations, such as histogram

equalization, that are defined over original image data. The

A and B data arrays are NxN data arrays of complex values.

They are used in operations that require real or complex

.. values for the image such as the Fast Fourier Transform. The

G data array is a general purpose complex valued array. Its

length is somewhat arbitrary in that it need only be long

4enough to store parameters needed in operations such as

frequency domain filtering. The S array contains information

about conditions, such as errors, that have arisen during the

execution of the last operation.

Operation Set. Given this structure, an operation set

must be defined for the image processor program. As

previously stated, once a command is interpreted the control

module activates one of the other modules. For inputting,

data the control module will activate the I/O unit for

reading the data and will activate the memory for storing the

49

10
47:

data. For outputting, data the opposite will occur. For '.

data movement within the program, only the sub-components

within the data arrays need be activated. Finally, to

perform operations on the data, the data is retrieved from

the arrays and operated on by the operations module. The

operation set is defined by the algorithms used in image

processing work.

The following are the set of operations that were chosen

for the image processor program to permit the implementation

of all algorithms presented in Chapter 2. An objective was

to keep the set of commands small for this thesis, but to

provide for the expansion of this set in future efforts when

more exact image processing requirements can be identified.

the operations are structured such that they can be applied

to any data array of the appropriate type. Some of the

operations are composed partially or entirely of other

simpler operations and it is possible to decompose one of

these operations into a series of simple operations and

achieve the same result by issuing that series of commands,

but it is beneficial to have the more complex operations if

they are often used to decrease command traffic.

I/O Operations. The input-output operations

required for the image processor program include getting the

next command and inputting and outputting the arrays. These

operations are given below.

50
5 U.

Get Command - receive the next operation command.

Input I array - input an image data array.

Output I array - output the image data array.

Input H array - input an H data array.

Output H array - output the H data array.

Input GN array - input complex valued array of length N.

Output GN array - output the first N elements of G.

Data Moves and Conversions. As indicated above,

there are primarily two data types needed for the image

processing operations: integer intensity values from the

original image and complex values used for FFTs and other

similar operations. Operations to convert between the two

data types are needed as well as copy operations between the

40 two complex valued arrays A and B. A summary of these

operations is presented below.

I <- A - convert and copy the A array into the I array.

A <- I - convert and copy the I array into the A array.

A <- B - copy the B array into the A array.

B <- A - copy the A array into the B array.

A <-> B - exchange the A and B arrays.

Single Image Operations. There are a number of

manipulations that are commonly used in manipulating a single

image. Some are defined for the intensity values of the

original image and others for non-integer and complex

quantities. rhe set of single array operations chosen are

51

,pp

A A <- 0 - zero the A array.

Re[AJ <- IAI - take the magnitude of A and store the
result in the real part of the A array.

ReLA] <- arg A - take the phase of the A array and
store it in the real part of the A array.

A <- A - take the complex conjugate of the A array.

A <- transpose { A I - do a matrix transpose on the
array A.

A <- log { A I - do a logarithmic transformation on A.

A <- fft { A] - take the two-dimensional Fast Fourier

Transform of A.

A <- fftf-I { A I - take the inverse 2D-FFT of A.

A <- A + G, - add the first element of the G array (a
complex constant) to the A array.

A <- A * G, - multiply the A array by a complex constant.

A <- scale { Re[A] I - perform a linear scaling
operation on A such the the real component of A
lies in a specified range.

A <- filter { A I - bandpass filter the (frequency domain)

A array.

G <- range { A I - store in G the range of values in A.

H <- histogram { I I - calculate the histogram of the I '

array and store it in the H array
a'

I <- map { I, H I - remap the intensity values of I to
the values in H. -

Two Image Operations. Some operations involve data

from two images. These include arithmetic operations such -,

as addition, or multiplications while other two image

operations are more complex, such as the two dimensional

52

convolution of two images. Note that A and B are complex

' valued and all arithmetic operations indicated are complex.

A <- A + B - add the B array point by point to A.

A <- A - B - subtract the B array point by point from
the A array.

A <- A " B - multiply the A array and B array point by

point and store the result in A.

A <- A / B - divide the A array by the B array point

by point with all values in B being non-zero.

A <- matching transform (A, B I - performing the b

matching transform on A and B.

A<- correlation (A, B }-perform the two dimensional

correlation of A and B.

A <- convolution (A, B }-perform the two dimensional

discrete convolution of A and B.

A <- convolution [A, GMx M }-perform the convolution

of A and a MxM kernel stored in G.

Summary

This chapter presents a description of the type ot

environment that would be useful for image processing

research. The image processing applications of particular

interest, real-time multiple image processing, require a

flexible and powerful set of capabilities in both hardware

and software. A hierarcnical arrangement of image processing

capabilities, ranging from low-level sets of image processor

programs to higher level symbolic processing control

structures, is proposed as a possible way to meet these

requirements. The set of low-level functions needed to

implement the image processing algorithms discussed in

53

• .'' . ,i, *"-." ' -- ' . -.', ' -.'.. .i... . . . 4 @.* / .2 4'S

Chapter 2 were outlined. This set of image processing

operations can be expanded to include other operations as

needed.

54

- o

IV. Detailed Design

This chapter presents the detailed design of the system

presented in Chapter 3. In the first section an overview of

the IPSC computer Is presented. In the next section the

image processing software is broken into its logical modules

and an overview of how the modules were implemented on the

iPSC is given. Next, the method of test for each of system

modules is presented with the actual test results being

presented in Chapter 5. In the last section the set of

functions that were provided to give the user access to the

image processing software running on the iPSC is outlined.

iPSC Hypercube

The following description of the Intel iPSC was taken

from iPSC system documentation and is provided to give the

reader an understanding of the hardware and software

facilities of that system. Further information is available

in the iPSC System Overview and the iPSC Programmer's

Reference Guide.

The IPSC Is a family of expandable parallel processing

computers that have the MIMD architecture discussed in

Chapter 2. Each system is composed of two major components:

the "cube manager" and the "cube". The cube manager is an

Intel System 286/310 running a Unix-based multi-user, multi-

tasking operating system. The 310 has an 80286

55

°/

microprocessor with the 80287 math co-processor and 2

megabytes (Mbytes) of memory. Mass storage includes a 140

Mbyte Winchester disk, 360 kilobyte (Kbyte) MS-DOS compatible

floppy disk, and a 45 Mbyte cartridge tape drive. Multibus

boards, Ethernet connections, up to 9 terminals, and up to a

total of 5 Mbytes of main are options supported for the 310.

Software support for program development includes Fortran, C,

LISP, and assembler languages, cube control and diagnostic

utilities, and debugging utilities. The cube manager is

connected to the cube via a 10 Mbit/sec Ethernet data

channel. The cube is an MIMD computational unit which is a

collection of non-shared memory processors connected in a

hypercube topology (see Chapter 2). Each cube actually

consists of one, two, or four separate physical enclosures

where each contains up to 32 processors (nodes). Thus,

models with 32, 64, and 128 nodes are available. Each node

has a 80286 microprocessor, a 80287 math co-processor, and .5

Mbytes of memory. A multi-tasking node operating system

supervises loading and terminating of application programs

and provides the inter-node communications facilities. Two

node options are available with the iPSC. the first is a

memory expansion that increases the memory of each node to

4.5 Mbytes. The second is a vector processing expansion that

performs vector operations on up to 16K element vectors and

provides an additional I Mbyte of memory to the node. The

memory option and the vector processing option can not be

used in conjunction. Nodes are connected in a hypercube

56

configuration using 10 Mbit/sec Ethernet data channels

between nearest neighbor nodes. Communications between the

nodes and between the host and the nodes is accomplished with

the system's set of synchronous and asynchronous message

passing functions.

Application programs typically consist of two

programs: a host program and a node program. The host

program is coded, compiled, and run on the 310 using message

passing to communicate with node programs. The node program

is coded and compiled on the 310 and then loaded into the

nodes using system commands. While typical applications use

the same node program running in all nodes, it is also common

to load different node programs into the various nodes of the

6cube.

The iPSC system used in this thesis is a 32 node model

with the vector processing expansion and an Ethernet

connection from the cube manager to a network of other "k

computers. A node program to perform the functions described

for the image processor program was written in the Fortran,

as opposed to C because at this time the vector processing

option is only supported in FORTRAN. A set of C functions

were written for the host computer to Interface with the node."

program.
•]

System Implementation %

As described in the previous chapter, the image

processor program is broken into four basic components: 1) b

57

-%

the control module, 2) the input-output module, 3)

operations module, and 4) the data arrays. rhe first three I

components form the three functional blocks of the design.

The data arrays are not global data structures but, rather %

are data entities within the image processor program that are

managed by the control module. The image processor program

is an asynchronous non-deterministic program with local

memory. That is, once the image processor program is started

it will continue to run, processing commands upon receipt

while maintaining its data array's contents. This is in

contrast to the majority of software systems running on uni-

processor computers where programs (typically called

subroutines, procedures, functions, etc.) start running only

when they are called and do not retain the values of internal

variables from previous calls. One exception is the Ada

language which supports independent, concurrent programs

called "tasks" (4:63). Since Ada is generally used on uni-

processor machines, these independent program structures are

run by time-sharing the single processor.

In the image processor program code developed for this

thesis, images are divided into horizontal strips of equal

size and distributed across the nodes, giving each slice two

adjacent slices. Any operations that require data outside a

node's slice must do a data swap with the node containing the
.5

required data. Thus, this division is advantageous in two

respects. First. it is easier for the programmer to

58
lie

lie

- -A MM - ' -' - '.- ,- --L. '- 'L.' I
. . . .

implement the code by reducing the number of boundaries that

data must be transferred across. Second, the number of

messages in the cube is also reduced, thereby avoiding data

channel congestion from larger numbers of messages.

For this thesis, 16 nodes were used because the FFT

routine written by Intel was designed to run on a cube of

this size (a recommendation in Chapter 6 addresses rewriting

this code). However, all other routines were written to be

used on cubes with two or more nodes. ks discussed in the

quote from Palmer in Chapter 2, the hypercube architecture is

"recursive". That is, a hypercube of dimension N is composed

of 2 hypercubes of dimension N-i. This makes it easy to

write code that can be run on hypercubes of various

sizes.

Control Module. The two basic functions of the

control module are to receive and decode commands, and e

call the other modules of the image processor program to

perform a series of actions based upon the commands. Once

the image processor program is started it will repeat this

two part process indefinitely. This translates Into the

following program structure.

loop forever
getcommand

case (command)
command 1 :

command 2 : '

command3:

59

SM

~ ~ *~~ i-S.v .,.%:.~~.%-'v.- .'*%'%-*~-*. .--. -.

I,

command .N

end case

end loop

For each of the commands, some sequence of calls are issued

to the input-output module and the operations module. The
- I

control module was first implemented and later, operations and

I/0 functions were added one at a time. The commands consist

of integer values that are passed from the software on the

host to each of the nodes. Each node then executes the

appropriate steps to carry on that operation. A status flag

was included as a part of the image processor program to

indicate the success of the most recent operation and can be

read via a "status" command provided with the host routines.

Test cases for this module need only consist of sending valid

commands and representative examples of invalid commands and

checking for the appropriate response.

Input-Output Module. The input-output module is the

link to the host program for the image processor program.

Two classes of data are passed through the input-output

module: commands, which are received and passed to the the

control module and secondly, data arrays, which can be input

to and output from the data structures. Each node receives

only a portion of the image data while the smaller arrays are

replicated In all nodes. The Input-output module was

60

. I s%. %

Implemented as a set of input and output pair of routines for

each type of data array. rhe routines were written to apply
er

for any instantiation of that data array type so that

additional arrays can De added to the program if desired.

Verification of the correct operation of the input-

output functions can be accomplished by inputting known

values and checking the output arrays for consistency with

the known values.

Operations Module. The operations module is the major

functional part of the image processor program and consists

of the set of elementary operations that are necessary to

implement the image processing algorithms. rhe following

paragraphs present the hypercube implementation of each of

the operations listed in Chapter 3.

A large portion of the operations implemented required

no data exchanges between slices. These include all

operations that involved point by point operations such as

copying one array to another, point by point arithmetic

operations between arrays, and arithmetic operations on

arrays involving a constant. These operations are the

simplest to implement because each node merely applies the

particular operation to its portion of the array as if that

where the entire array. The more interesting and difficult

operations are presented in the following subsections.

Verification of the correctness of the results of these

operations is complicated by the large sizes of the image

data array, so the operations were validated by using test

61

cases for which the correct results were known. The details

of these tests are presented in Chapter 5.

Matrix Transpose. £he matrix transpose, the most

complex operation presented, was written by Intel

programmers. The data arrays are distributed across

multiple nodes and hence a matrix transpose requires each

node to send part of its portion of the matrix to each other

node. This constitutes a complete interchange of data and is

the most communications intensive type of data exchange in

parallel processors of any type. The matrix transpose

routine provided by Intel takes advantage of the message

routing algorithm used in the IPSC and a "synchronization"

routine to maximize communication channel usage while

minimizing data channel contention. This function was

written for a cube with exactly 16 nodes and is not easily

adaptable to other cube sizes. This restriction stems from

measures required to overcome deficiencies in the message

traffic throughput capabilities at each node in the iPSC

system. However, these deficiencies are expected to be

alleviated in the next version of the hardware and

consequentially the transpose function can be simplified at

that time.

Two-Dimensional Fast Fourier Transform. rhe 2D-FFr

was also implemented by Intel. It uses a one-dimensional FFT

routine built into the vector processing board and the matrix

transpose. Using the "row-column method" (16:320), the 2D-

62

, .e--

7,77 -77-

FFr is computed by performing one-dimensional FFT on each row

of the matrix, transposing the matrix, and again performing

the FFT on each row. The result is the transpose of the 2D- I

FFT so the matrix must be transposed a second time to get the

proper form.

Convolution and Correlation. As discussed in

Chapter 2, there are two ways to perform the convolution or %

correlation between two images. In the first the summation

is performed in the spatial domain. As will be shown in

Chapter 5, for cases where an image is convolved or

correlated with a smaller sub-image this method is

satisfactory but, for two full sized images it is faster to

perform the operation in the frequency domain. To convolve

two images in the frequency domain, the 2D-FF of both images

is computed, the two FFTs multiplied point by point, and the

inverse 2D-FFT of the product is computed to yield the

result. The correlation is similarly computed but, the

complex conjugate of one of the images is taken before the

two FFTs are multiplied. Both spatial domain and frequency

domain convolutions were implemented while only a frequency

domain correlation was implemented. the frequency domain

operations were implemented using the functions already

discussed. The spatial domain convolution requires the sum

of the product of the image and sub-image for each point in

the larger image. Thus, for points within a certain distance

of a slice boundaries a data exchange is required. For

example, when using a 7x7 convolution kernel, calculating the

63

top edge values for a horizontal image slice requires a

horizontal strip 3 pixels tall from the image slice above.

This is accomplished by exchanging the required boundary

pixels across every boundary and storing them in a buffer to V

be accessed during tne convolution summation when needed.

Histogram and Histogram Equalization. The

histogram functions implemented make good use of the parallel

architecture. In forming the histogram, each node forms a

histogram of its own slice and the total histogram is formed

at the host by summing the partial results. The histogram

can, if desired, then be equalized in the host machine. The

new histogram is then sent as the input to the mapping

function which distributes this histogram to all nodes. Each

node then maps its local pixels to the new values indicated

by this histogram.

Matching Transform. The first step In performing

the matching transform is to find the mean of both images.

This is accomplished by having each node performing a sum of

its own pixels, totaling the partial sums in node 0, and then

dividing by the total number of pixels. Node 0 then

distributes the mean to all other nodes so each can form its

part of the covariance matrix summation. fhe contributions

from all nodes are again summed in node 0. Node 0 alone

proceeds to find the elgenvalues of this 2x2 covariance

matrix. Using the largest of the two eigenvalues, node 0

finds the eigenvector. The two elements of the eigenvector

64

V..

I

are then distributed to all other nodes. Each node uses

these values as weights for adding the two images together.

Thus, the pixel by pixel operations are distributed across

all nodes, while summation of partial results and simple

calculations are left to a single node.

Frequency Domain Filtering. The filtering routine

was taken from code written by Intel programmers. First, a

one-dimensional bandpass filter, of length N for an NxN

image, with a sin 2 roll-off is generated based on user

selected parameters specifying the pass-band region and a

roll-off region to either side of the bandpass region. this

filter is then applied to first the rows and then to the

columns of the frequency domain representation of the image.

No data is exchanged between nodes because each node

generates the entire one-dimensional filter for its own use.

Thus, given that a one-dimensional filter F(n) has been

generated, a pixel at an arbitrary position (x,y) in the

image is first multiplied by F(x) and then by F(y) effecting

V'
the same results had a two-dimensional filter been generated.

Since each node can determine where in the image its slice

comes from, the proper index values x and y can be calculated

in terms of the whole image, not just the local position.

Host Program Interface

A set of C functions were written to provide a simple to

use interface for writing applications that would use the

image processing procedures presented above. The procedures

65

1:. W-

use a set of three types of message passing routines. The

first is a function that passes commands to the node

programs. The second type of routine sends and receives the

image data. The third type deals with the integer array used

for histogram mapping and the fourth transmits the complex

array used for filtering parameters, constants, and other

such quantities. Using these sets of routines, functions to

perform the FF1, convolution, and the other image processing

operations were written. The image processing routines on

the host machine can be viewed as a bridge between the

application and the image processing routines in the cube.

This interface removes the burden of dealing with the multi- t

processor computer and presents a "single system image"

(1:31) to the user.

665

V. Software Analysis e

This chapter describes the steps taken to insure the ,

image processing routines implemented are correct and

presents some timing measurements of run times for the FFT

for various computers. In the next section, some information

about the difficulties encountered while programming the iPSC

is given and finally, an assessment of the package as a whole

is given.

Correctness Tests

Verifying the correctness of software is a difficult

task and has been the subject of much literature (20:318).

In the case of image processing software, the difficulty of

this task is compounded by the large size of the data files.

For example, it is practically impossible to analytically

compute the 2D-FFT of a 256x256 image. Thus, in many cases,

the correctness of a program can only be assessed by

comparing the output with results obtained by others.

Two basic methods were used in testing the routines.

First, the images were visually inspected to determine if the

expected result was obtained. While this method is not

precise, it is a good indicator. The second method used was

comparing the maximum and minimum values of the resulting

image with the maximum and minimum values expected. The

combination of these two techniques proved an effective way

67

" 0' 4" '0 " ', ° ", ;;"" '"3) "7 ']' ' ' " 'i€ " i')-? "-' " ' ,' ? .-" ----.

to detect errors in the routines. The following sections

N outline the procedures used to verify the correctness of each

of the particular routines.

Point-by-Point Functions. Many of the operations

implemented required nodes to operate only on iLs own data

and did not require inter-node communications. These

functions were tested by Inputting images with a known range -.

of values, performing the operation, and verifying the range

of the resulting image was as expected. rnis method was

augmented with inspection of the resulting images.

Fast Fourier Transform. The FFT routine written by

Intel and incorporated into the image processing software was

tested first by transforming then inverse transforming ae.

several images to verify the original image was preserved.

*4 As a further test, an 3x8 square with a constant amplitude

across its surface was transformed and the log transformed

magnitude of its frequency representation was compared with

the results presented by Pratt (19:477). The result was a

two dimensional (sin x)/x function which follows from the

one-dimensional transform of a rectangular function

(29:493). As larger squares were input, the spacing of

the zero crossings in the frequency domain decreased as

expected. The correctness of the inverse FFT follows from

the correctness of the FFT since images were correctly

recovered from the frequency domain.

Correlation. It is the property of the correlation

function that if a "template" is placed in the upper left-

68
0'

01

hand corner of an image and is correlated with a second

image, the "scene", peak values will occur in the resulting

image at locations corresponding to the locations where the

pattern occurred in the scene. Thus, the location of these

"correlation peaks" are an index into the scene to

occurrences of the pattern. The correlation function was

tested by using various shaped patterns and correlating these

patterns with scenes that contained copies of the pattern.

Convolution. As mentioned in Chapter 2, the convolution

and the correlation differ only by taking the complex

conjugate of one image in the case of correlation. Thus,

since the same code was used for both the convolution and the

correlation with only'a change it in signs of two terms in

je the multiple (to effect complex conjugatation) and the

correctness of the convolution follows from the correctness

of the correlation. But as a further check, squares of

IL

various sizes were convolved to insure the convolution worked

as expected.

Convolution Kernels. rhe 3x3, 5x5, and 7x7 convolution

functions where checked by operating on images with various

kernels and inspecting the resulting image and checking the

range of values to verify the results. The first kernel used

was an impulse, that is, the kernel contained a single non-

zero value equal to 1. This function passed the image with

no changes except for offsets corresponding to the offset of

the 1 In the kernel. Thus, if the single non-zero term is in

9%

69

the center of the kernel no offset resulted. Next, the non-

zero term in the impulse was changed to values not equal to 1

and the range of resulting image was verified. As a final

test, various know operators (13:9.1) such as edge

enhancers and high pass filters were used on images and the

results verified by inspection.

Band-pass Filter. The operation of the bandpass filter

was verified by two means. First, an image with constant

intensity values through-out was used as the input to the

filter operation and the result was inspected to verify that

the regions of the image left at the constant value

corresponded to the location of the pass-band frequencies.

Next, the filter was used on the frequency domain

representation of an image and the spatial domain result

inspected for the correct alterations. Images were inspected

for "ringing" around edges in the cases of sharp cut-offs for

the filter.

Histogram. It is the property of the histogram that,

for an NxN image, the sum of the histogram values will equal

N2 . This property was verified with various images as input.

One of these images was a KxK square of uniform intensity Q.

The resulting histogram indicated K pixels of value Q and

(N 2 -K 2)of value 0.

Histogram Equalization. the histogram equalization

function was tested by comparing a portion of the histogram

of an equalized image with the results of a hand calculation

of the equalization process. As a further test, an image

70
V

- .1. ' U U V : U *,.:S '' ,',' : ..'- *' _- *.*_,',':.",*,,,P, . . -. .. -.., 'I '.U .-'F,%.S' .:

with a low intensity region containing details was histogram

equalized to verify the region's intensity was increased as

expected.

.

Matching Transform. The matching transform function was

tested by inputting electro-optical and FLIR data from a

scene and visually comparing these with the results obtained

by Hall (10:182). As a further test, two copies of an

image were used as input to the matching transform. As

expected, the two copies were equally weighted and the

resulting image was equal to the original. .%

Performance

The following time measurements were taken to give a

general indication of the relative speed of the image

processing package. The measurements are not necessarily the

best possible on each machine, but do provide a rough

comparison between the options that are typically available

to a programmer during the development of an image processing

application. Any attempt to represent the performance of a

multi-processor computer in terms that can be compared with 4'

the performance of a uni-processor computer or even another

multi-processor computer would require many assumptions and

caveats and thus, would prove useless as a basis of

conclusions. Thus, the times below are presented as the

times required to do particular computations with means that

were readily available and not as general performance

measures.

71

7 1.

In all measurements below for the 2D-FFr the "row-column

method" (16:320) was used.

170.6 sec - C program on Sun 3 workstation.

38.1 sec - C program on Vax 11/780.

20.0 sec - C program on Sun 3 workstation with MC68881

math coprocessor.

7.2 sec - Fortran program on iPSC hypercube with 16
nodes.

.6 sec - Fortran program on IPSC hypercube with 16
nodes and vector processor boards.

Time measurements on the IPSC were taken for a 16 node

configuration of the Fortran node program. After the FFT

operation command, a status request was sent: the times on

the iPSC were measured from the time the operation request

was made to the time the status reply was received. rhe

previously measured overhead time of the status message was

then subtracted to determine the net time for the operation.

It is important to note these times do not include times to

N
load and retrieve images, which total to about 2 seconds.

Times for all other machines are cpu time for a C program

using the same FFF algorithm, obtained by using the times()

function.

rhe 8.5:1 ratio between the Sun workstation times with

and without the MC68831 indicate the large number of

mathematical calculations in the 2D-FFf. The 12.67:1 ratio

between iPSC times with and without the vector processor

boards reflects a gain in the speed of mathematical

72

r%% r W

V.. calculations, but also a gain due to the additional

parallelism of the vector processors at each node.

The following time measurements were taken for the

convolution of various sized kernels with a 256x256 image.

The ITEX hardware (13) is a dedicated add-on board for a

micro-VAX II for image processing. The times measured for

the iPSC were for a 16 node configuration using the vector

processing capabilities.

For a 3x3 convolution kernel the iPSC was faster by a

3:1 ratio.

10.8 sec - ITEX.

3.6 sec - iPSC vector with 16 nodes.

For a 5x5 convolution kernel the ratio was reduced to 2.5:1

ratio.

20.8 sec - IrEX.

8.3 sec - iPSC vector with 16 nodes.

Finally, a 7x7 convolution kernel yielded the following times

with a 2.38:1 ratio.

35.5 sec - ITEX.

14.9 sec - iPSC vector with 16 nodes.

This gradual closing of the margin between the iPSC and the

ITEX can probably be attributed to either increased

73

efficiency on the part of the ITEX for larger data set sizes

or inefficiencies in the data exchange process for the IPSC.

System Programmability

The programming task on a parallel computer proved much

more difficult than programming on serial computers. Much of

this difficulty was experienced in data communications, both

host to nodes and node to node. The system's message passing

routines are of a very elementary form. Parameters to

specify a message include, the node's own communications

channel number, the "type" of the message, the buffer that is

to be sent, the length of the buffer, the destination node,

and the process number of the destination node. Since all

messages In the system's message passing routines are in

terms of bytes, not In terms of the number of data elements,

the programmer is required to determine the number of bytes

in arrays of various types and this often leads to errors

caused by misinterpretation of the buffer contents. For

scalable routines, the destination node is often determined

by a calculation and this also increased the likelihood of

errors. Often the data type of variables was misdeclared and

messages were erroneous or lost. All of these factors can be

traced back to the programmer's error, but the number of

parameters to consider and the difficulty of debugging

multiple programs, including the host program, resulted in a

substantially more difficult programming task. Booch makes

reference to the Hrair limit.

74

... there exists a fundamental limitation in our ability
to manage a number of different objects or concepts at

one time. In 1954, the psychologist George Miller
concluded that the limit to the number of entities
humans can process at one time is roughly seven, plus or

minus two ... our ability to manage the complexity of

many entities falls off sharply after this number

[4:31].

Thus, while the code for the image processing routines was

broken into distinct modules, the complexities of programming

a parallel computer, with the present system tools, still

proved to be a strain to manage. Programming errors, in many
5.

cases, took days to find even when the problem was an

elementary error.

Image Processing Routines

The previous discussion points up the exact goal that

was be addressed when the software structure was designed:

reduce the complexity of using a parallel computer while

maintaining as much of its versatility as possible.

As described in Chapter 3, the image processing

functions were organized around a small number of data arrays

with a set of operations that are allowed for these arrays.

These "image processors" can then be grouped into a higher

level structure, while keeping the total number of entities

being manipulated below the Hrair limit.

75 .

S45

• nn uu m mtutnm| umnml imu U - -. . .

VI. Conclusions and Recommendations

Conclusions

During this thesis, a software structure that simplifies

the use of a parallel computer for image processing was

developed. Furthermore, the capabilities of this software

can be readily expanded to meet the future needs of image

processing researchers. This thesis has demonstrated that

parallel processors can be used to perform many image

processing algorithms and provide a unique environment for

image processing research. This is significant because

present sequential processors may soon reach physical limits

and other techniques, such as optical processing, have not

produced usable techniques for faster sequential processing.

Therefore, parallel processing is the best alternative to

meet the increasing computational requirements of digital

image processing and that of other fields as well.

During this thesis, some of the algorithms implemented

have proved excellent candidates for taking advantage of a

multi-processor environment because they were perfectly

divisible. However, this effort used a relatively small

number of nodes. For an image size of 256 by 256 each of the

16 nodes used had only 16 scan lines of the image. If the

number of nodes is increased arbitrarily the image becomes so

fragmented over the nodes that internode communications for

those algorithms that are not perfectly parallel becomes a

76

'a.-aa.0,2.

7 -

prohibitively large proportion of the time required to

complete the computation. Therefore, while parallel

processing can increase the processing rate of image

processing applications it does have factors that govern the

exact implementation chosen.

Finally, an observation about programming a parallel

computer; while programming a multi-processor computer

proved more difficult than programming a uni-processor

computer, it is possible given the number of entities being

manipulated is keep to a manageable level. Thus, modularity

of the code and a hierarchal structure for the code is

imperative.

Recommendations for Further Work

Parallel processing is relatively new area and there are

many applications that can make use of it. In the area of

digital image processing new techniques are being developed

each year and many of them rely on algorithms presented in

this thesis or similar ones. Future pursuit of the work

presented in this thesis can contribute to increasing the

speed of these algorithms and could aid in providing a real-

time capability for these techniques. Several areas of

improvement or additional capability are outlined in the

following sections for future work. The first three outlined

are contingent on Intel up-grades to the iPSC hardware and

software.

77

Matrix Transpose. In the FFT routine a set of data

arrays are used to determine when a node should transmit its

part of the image to other nodes. This is effective because

the iPSC uses a fixed routing algorithm. This method was

required to overcome shortcomings in the iPSC's

communications bandwidth. i hen the new 80386 based node

hardware becomes available it will help to ease the original

problem encountered but, it will not make the matrix

transpose simple. For example, the algorithm

for i = I to number of nodes

if i not equal mynode number then

send to node(i , arraypart(i))

geta message(arraypart(j))
endif

* next i

would result in all nodes, except node one, sending their

first message to node one. This will result in a large

congestion in the communications paths surrounding node one.

This matrix transpose is in the larger class of problems

known as a complete data exchange, that is, each node sends

information to every other node. This communications task is

the most demanding on any parallel architecture. The data

arrays used in the FFT were constructed by Intel programmers

for a dimension-4 cube only. While it would be possible to

construct arrays for other required cube sizes, a general

do,? solution would prove more satisfactory. It should be

78

-,P... - -, -\% a "-

.

possible to construct an algorithm that calculates where the

next message should go in a way that minimizes congestion in

any one area. Three quantities would be needed in the

algorithm

1. The cube size.

2. The originate node's number.

3. A counter to keep track of the process that woald

take 2d steps, where d is the cube dimension.

Image Rotation. Rotating an image in a sequential

processor is a computational-intensive and memory access

intensive operation. The equation for calculating the new

position (x',y') of a pixel (x,y) in the image rotated by

theta (10:123) is

ots

xy = x cos theta + y sin theta

y" = -x sin theta + y sin theta.-

In the frequency domain this becomes

u = u cos theta + v sin theta

v- = -u sin theta + v cos theta

This task is not easily implemented in a parallel processor, a

such as the iPSC, since data must be exchanged at least

between adjacent segments of the image or at worst a complete

exchange is required.
a7

- -. H'u - V .a p.. .. .".-H..'.. ". ... ' .• '. . - .'.. .-a-. i.. . - * -. - a..' -'%

,%

Multiple Task Division. The present implementation of

the image processing environment uses each of the 16 nodes to

run multiple processes. This causes a contention for the 6

vector co-processor. When the operating system on the iPSC

is up-graded to allow requests for subcubes the multiple

processes can each be allocated its own subcube and thereby

remove the contention problem associated with the vector co-

processor.

Improved Fast Fourier Transform. The FFf-related

subroutines used in the node program written by Intel are not

scalable because they use a set of data arrays specifically

set up for a dimension-4 hypercube to determine which nodes

are to exchange data during the matrix transpose. This

process is synchronized by using a routine at the beginning

of the transpose and passing a token message to signal when
'.

node sets can exchange data. These measures where necessary

because of the limited message traffic capacity of the

present hardware. The next planned release of node board

hardware will include a set of node communications co-

processors. This will eliminate the need for the

extraordinary measures required used for this version of the

hardware. The FFT routines should be modified to eliminate

its dependency on cube dimension.

Dynamic Cube-size Scaling. The software written for

this thesis was written for a fixed cube size due to the FFT

subroutines peculiarities discussed above. For future

applications it would prove useful to have the node programs

80

% .

9

modified so that the routines could dynamically scale all

operations based on the size of the cube they were loaded in.

Once the FFT routine has been modified as outlined in the

previous section, the other routines can be modified to run

for an arbitrary cube size.

Dynamic Image-size Scaling. For this thesis a fixed

image size of 256 by 256 was used because this was the size

of the available data base. While this image size can be

changed by simple modification and recompilation of the code,

the capability to choose the size of the image could be an

excellent enhancement to the image processing environment.

A fixed image size was chosen for this thesis to simplify the

code development and was planned as the next enhancement to

the software.

Image Processor Communications. The slowest operations

implemented in the image processing environment are the

loading and retrieving of images. A useful operation to

provide would be the capability to move information directly

from one image processor to another. This would allow data

to be consolidated in one image processor when comparisons or

a fusion of the data was necessary with having to retrieve

and store that data from one image processor and transmit the

data to the second image processor. This can be accomplished

by adding a two part command to the command set already

implemented. First, a message would be sent to the origin

image processor program, indicating where its image should

81 F

be sent. Second, a simple "get image" command would be

issued to the destination image processor program, but no

image be sent from the host. This second part requires no

additional code for the node program since the present get

image command does not care where an image arrives from.

Summary

Parallel processing is a relatively new computer

technology that holds promise for solving the problem of ever

increasing need for greater computational capability in Image

processing systems. This thesis has taken a small step in

the direction of developing this potential into a solution by

providing a tool that others may use in their research.

r

32

~II I

Appendix: User's Manual for the

Image Processing in Parallel Environment

Introduction

This manual outlines the capabilities and use of the

Image Processing in Parallel (IPP) environment. The IPP

environment is a collection of image processing routines that

make use of an Intel IPSC hypercube to reduce the computation

time required for these operations and to provide a multi-

task environment for image processing. No detailed knowledge

of the hypercube or parallel processing is required to make

use of the routines. The environment can be used from any

Sun 3 workstation running the Suntools environment that has

an Ethernet connection to an Intel iPSC Vector cube. This

manual focuses on the use of this environment as installed on

Sun 3 workstations at AFIr in the Department of Electrical

Engineering. At present all of these workstations do have

the required Ethernet access to the department's IPSC Vector

cube.

Overview

The IPP environment makes available to the programmer a

set of image processing procedures written in the C

programming language. The environment is presently set up to

manipulate 256 by 256 images with 8 bits of resolution for

each pixel. The environment allows an image processing

83

0.m

application to start an "image processor program", request a

task be performed by the program and proceed in the

application while the task is being completed. Later, when

the data is needed the results can be retrieved. A "status"

mechanism is included to enable the application to query if

the results are available. By starting multiple image

processor programs the application can specify operations on

different data sets and proceed with other tasks while the

operations are performed. The application will only be

interrupted from proceeding when data from an image processor

program is needed, but the operation has not been completed.

This method of asynchronous operation allows the user

application to act in a supervisor role while IPP image

processor programs provide an image processing capability

running independently of the application.

While the library provides a powerful mechanism to do

image processing, a set-up process to access the hypercube is

required prior to using the routines. This process is

outlined in a step by step fashion later in the manual and

should not prove difficult even for those with little 1

experience using the Unix operating system on the Sun

workstation.

Software Installation

An IBM format disk containing source files, executable

files, and installation instructions has been provided with

this thesis. Have the files on the disk installed on the

84
N .

. g.JJ V.

. . . -N .- V W..

hypercube by the system's administrator and type %-e

more README.IPP

As each screen has been read, use the space bar for the next

page or the return key for the next line. This is a text

file explaining where the files on the disk should be

installed. '

Requirements for Using the IPP Library

There are several requirements that must be met in order

to make use of the IPP environment:

1. The programmer must have access to a Sun 3
workstation. It should be noted that a Sun 3 has

color capability and this capability is used when
displaying the images. Hence, a Sun 2 workstation

can not be used. It should also be noted that the
executable code provided with this package will not

run on a Sun 2 even if the display routine is not
used. This is due to the fact that Sun 2
workstations use a Motorola 68010 microprocessor and
the Sun 3 workstations use a Motorola 68020. If use
of a Sun 2 is necessary, all code except the image
display routine can be recompiled and run on the Sun
2.

2. Access to the iPSC Vector cube is also required to
use the IPP environment. Before an application can
be executed the user must login to the hypercube from
a window of suntools and execute a program to allow

the software running on the Sun workstation to
communicate with the hypercube. This procedure is
outlined in detail later in this manual.

3. The user's application must be run from within the
"suntools" environment on the Sun workstation to use
any image display routines.

4. The appropriate IPP environment files for the Sun and
the iPSC hypercube must be available in the user's
directories as specified on the disk installation

Instructions.

85

7.& _A0I%- A

Example Program

A few example programs have been provided to demonstrate

the capabilities of the IPP environment and to serve as

programming examples to aid in the development of other

applications. The first is a simple program that computes

the Fast Fourier Transform of an image specified by the user

and displays the result. The program is listed below and has

been provided with the example

source files:

/* fftdemo program */
#include <stdio.h>
#include "ipp.h"

main(argc,argv)

int argc;
char *argv[];

{

/* the image processor identifier */
IP TYPE ip;

/* the image buffer */
I TYPE image[X PIX*Y PIX];

/* the histogram buffer */

H TYPE h[2561;

/* misc. buffer */

G TYPE g[256];

FILE *fp;
int I,J,k;
short bit;

/************************** ****I*

if (argc=) f
printf("No file \n");
exit()

86

C. '. - %*' 4~~C ' - - " '

1 61C711"W3. - 7F.7w XIV-70i Nw r i. pFl

- v

if ((fp=fopen(*++argv,"r")) == (FILE *)NULL)
printf("File not found\n");
exit(-l);

}%
/********************************

printf("starting \n");

/* start an image processor */
ip=start ip);

/* initialize suncore */
sun init(;

/* copy the image to the I array */
ftoI(ip,fp);

/* copy the I array to the A array */
ItoA(ip);

/* save a copy in B */
AtoB(ip);

/* get a copy of the image back from I */
get I(ip,image);

/* display the buffer 'image' *
show(image,0);

/* do the fft on A */
fft(ip);

/* take the magnitude */
mag(ip);

/* put the dc frequency terms in the middle */
swapq(ip);

/* scale to do the log transform */
g[0I=1 .0;

g[2]=255.0;
put G(ip,g,2);
scale(ip);

/* do the log transform */
log(ip) ;

/* scale so we can convert to 8 bit integers in I */
g[01=0.0;

g[21-255.0;
put G(ip,g,2);
scale(ip);

87

•

/* convert A to 8 bit I array */
AtoI(ip);

/* get a copy of I */
get_ I(ip, image);

/* show the result */
show(image,O);

/* terminate suncore */
sun term);

The first step tc using this program is to enter the Suntools

environment. This is done by typing

suntools

More information about the suntools environment can be

obtained by access the Sun online system manual. This is

done by typing

man suntools

More information on the man command is made available by

typing

man man

To compile the program the following files must be available

on the Sun workstation.

ipp.h
Ipplib.a

cubelibv.a
makefile

host.c

88

AO-81192 633 IM
GE PROCESSING USING

A PAR ALLEL RRCHITECTURE(U)
AIR 2/2

FORCE INST OF TECH WRIGHT-PATTERSON AFI ON SCHOOL OF
UNIC CLP ENGINEERING B R HODGES DEC 67 AFIT/GE/ENG/87D-25

UNLASS IFIE FG 1219NL

EhhhhmmohhEEEKm

122.

,fi

lilt I1.8
U11IL25 fl1.4 iir11=L6.

|V *.

where host.c is the fftdemo program. To compile the program

type

make host

After the file is compiled with no errors, the communications

link between the hypercube and the Sun workstation must be

established. Two "windows" are required to do this: one for

the hypercube and one for the application running on the Sun.

From one of two windows type

rlogin vect cube

This window will be referred to as the hypercube window.

After logging into the vector cube, from the hypercube window

type

ipp

This program will first attempt to obtain ownership of the

hypercube. This is necessary since only one user is allowed

to use the cube at one time. The program will not proceed

until it has obtained ownership of the cube. Once the "DONE"

message is printed you will be instructed to run your

application. If for any reason the Ethernet connection is

lost before the application program exits normally, move back

to the hypercube window and type

restart

As your application is running, any error messages generated

89

by the cube will appear in the hypercube window. By moving

the cursor from this window to the second window you be will

be able to run the fft demo program. From the second window

type

host image.img

where "image.img" is a 64K image file. The image will be

read in, and the fast fourier transform computed. Next, the

image will be scaled and translated for display. Finally the

image will be displayed on the screen until one of the three

mouse buttons is pressed while the cursor is in the

applications window. If the cursor is moved from the

application window during the display of an image, the

suntools environment will change the screen colors. The

image can be viewed with its proper shading by moving the

cursor back into the application window.

Image Processor Program Routines

This section presents each of the C routines written for

the host. An explanation of the purpose and possible uses of

the function call will be presented and a code section will

demonstrate the proper syntax for using the function. rhe

file ipp.h contains the "define" statements for the variables

required for the number of pixels and the number of nodes.

The IPP set of routines makes available a unique working

environment for an image processing applications programmer.

The application can start an image processor program to

90

Na,
V - V "V

perform a variety of operations on an image. Once an image

processor program is started it will exist until the

application has completed running and will maintain any image

until the image is overwritten by a new image or it is

explicitly erased.

In each image processor program there are five data

arrays. The integer I array is used to feed images to the

image processor program and operations that apply to integer

image data will be performed on this array. The next two

arrays, A and B, are complex data arrays that are used for

operations that require real or complex quantities. These

arrays can not be loaded directly, but information can be

converted to and from the I array. The last two arrays, H

and G, are smaller general use arrays. The H array is a 256

element integer array used mainly for histogram related

operations. The G array is floating point valued and is used

for a number of purposes.

The startip function is used to start an image

processor to perform image processing tasks. An image

processor program identifier is returned and used to access

the image processor program in subsequent function calls.

This function can be called multiple times to create multiple

image processor programs.

IP_TYPE myipl, my_ip2;

myipl - start_ip();

91

* - p 5 00 5 0 5- S P. W~S U ,4

myIp2 = start_ip();

The put_I function Is used to load the I data array with an

image. This must be done after the start ip routine but

before any image operations can be performed.

IP TYPE my_ip;

IMAGETYPE my_image[X_PIX*YPIXI;

putI(my_ip,my_image);

The getI function is used to retrieve the I array and store

it in an image array. Using the same variables as in load_I

the function call is

getI(my_ip,my_image)

The getH function is used to retrieve the results of

histogram type operations. The H array is a 256 integer long

array.

integer my_histogram[256J;

getH(my_ip, myhistogram);

The put H function Is used to store data in the H array. An

example of the use of this function is when performing the

remapping of an image during histogram equalization.

92

put_H(my_ip, my_histogram);

The hust function determines the histogram of the image

in I and stores it in H. The histogram can then be retrieved

by using getH.

hise(my_ip);

The map function maps the intensity values of the image I

into new values in the H array. Thus, if H[015 then all

pixels in I whose value is 0 will be given a new value of 5.

This function is used to remap images after their histogram

has been equalized in the histequ function.

map(my_ip);

The histequ function performs a histogram equalization on

the image in I. It gets the histogram of the image,

equalizes the histogram, and remaps the image based on this

new histogram.

histequ(my_ip);

Many image processing operations require real or complex

values to perform the operation. Two complex arrays A and B

are provided in the image processor program to do these

calculations. the following functions are provided to

convert between image data and complex data.

ItoA(myip); /* convert integer array I to */
/* complex array A /

93

AtoI(my_ip); /* convert real part of complex */
/* array A to integer array I */

There are three functions that move data between the A

and B complex arrays. They move data from A to B, B to A, or

exchange the data between A and B.

AtoB(my_ip); /* copy complex array A to B */

BtoA(my_ip); /* copy complex array B to A */

AexB(my_ip); /* exchange the complex arrays */

Some of the operations that are possible for the A array are

zero(my_ip); /* zeroing the A array */

range(my_ip); /* find the range of the A array */
/* and store the results in *1
/* GIO] and Gill. */

mag(my_ip); I* taking the magnitude of A *I

phase(my_ip); /* taking the phase of A */

conjugate(my_ip); /* taking the complex conjugate */
/* of the A array */

transpose(my_ip); /* transposing A *1

fft(my_ ip); /* taking the fft of A */

ifft(myip); /* taking the inverse fft of A */

The first element of the G array is used to allow operating

on the A array with a constant.

Cault(my_ip); /* multiply A by G[OJ *1

Cadd(my_ip); /* add G[OJ to A */

94

There are also several functions that perform operations that

involve both the A and B complex arrays. For all these

operations the result is stored in A. They are

add(my_ip); /* add B to A */

sub(myip); /* subtract B from A */

ault(my_ip); /* multiply A by B */

div(my_ip); /* divide A by B */

mt(myip); /* perform the matching transform */

conv(myip); /* perform the circular convolution */
/* of A and B *I

corr(my_ip); /* perform the correlation of */
/* A and B */

op3(my_ip); /* perform the convolution of A */
/* with the 3x3 operator stored */
/* in the first 9 elements of G */

op5(myip); /* perform the convolution of A */
/* with the 5x5 operator stored */
/* in the first 25 elements of G */

op7(my_ip); /* perform the convolution of A */
/* with the 7x7 operator stored */
/* in the first 49 elements of G */

scale(my_ip); /* scale the A array to be in the */
/* range specified by the real */

/* parts of G[0] to G[Il */

A variable bandpass filter is provided for frequency domain

filtering. The frequency range is considered to exist in a

normalized range 0.0 to 1.0 with 0.0 being the lower end of

the spectrum. Three parameters, in the range 0.0 to 1.0,

that specify the filter characteristics are stored in the

real part of G[0], G[ll, and G[2]. The first and second

95

..%

indicate the bandpass region and the third indicate the width

of a roll-off region to either side of the pass band. For

example, to specify a low pass filter with a sharp cut-off

the parameters would be 0.0, 0.5, and 0.0. A high pass

filter would be 0.5, 1.0, and 0.0. Finally, a bandpass

filter with a gradual roll-off might be 0.23, 0.77, and 0.1.

Once the filter parameters have been stored in G, the

function call is

filter(myip);

Three routines are provided to display an image array on the

Sun workstation.

sun inito; /* initializes the image display */
/* capabilities

show(image,color); /* displays the image in the */
/* buffer "image" color-0, */
/* gives grey scales.
/* color=1, color display

term suno; /* terminate the image display */
/* capabilities

The sun-init() routine must be used called before any images

can be displayed. The show() routine will display an image

until one of the three mouse buttons is pressed. The

term sun() routine should be called before the application

routine exits back to the system or when the image display

capabilities are no longer needed.

When displaying the frequency domain representation of

Aan Image, the low frequency terms are in the four corners. A

96

routine that swaps the diagonal quadrants (1 with 3 and 2

with 4) of an image is provided to arrange the A array such

that low frequency terms are in the middle. The filter

function can be used on this representation but, low

frequency terms are near 1.0 instead of near 0.0. The

function call is

swap_quads(my_ip);

An Application

A simple menu-driven image processing program has been

provided for use as an example or as an interactive image

processing tool. The entire source code for the program is

provided on disk. The executable program is included

along with the source code so it is not necessary to compile

the program. This program must be run from a "gfxtool"

suntool's window to allow the text to be displayed. After

establishing the communications as outlined in the example

program section, type

ippdemo image.img

in the gfxtool window where image.img is a 64K image file.

An menu will present the following options:

97

* ~ ~~~~~~ 163? W ~ .*%~~.

1. Pick another image file

2. Low-pass filter the image

3. High-pass the image

4. Bandpass the Image

5. Show the FFT of the image

6. Histogram Equalize the image

7. Convolve a 3x3 operator with the image

8. Convolve two images

9. Correlate two images

10. Matching Transform

11. Save Image

These options represent the some of the IPP environment

routines available for the programmer. Of course, these

routines can be used with whatever routines have been written

by the user in an applications program to perform variety of

tasks.

Software Expansion

This section will outline the addition of a routine to

the set of existing routines. As an example, a routine

already in the software will be selected and the step by step

procedure taken to add it to the software will be retraced.

This discussion assumes the source files, from the floppy

disk, have been installed per the instructions in the

README.IPP file on the floppy disk. It is suggested that the

programmer become familiar with the source code files by

98

reading the documentation in each file before proceeding in

this explaination.

The routine AtoB, which copies array A into array B was

selected because it requires no internode communications.

Once this routine is understood, more complicated routines

can be added.

Adding this routine requires modification to both the

host program and the node program. The first step in

modifying the host software is to add an entry in the ipp.h

file on the Sun that represents the command code. This code

is used by the node program to determine what action is to be

taken. The command code for AtoB in the file ipp.h is

"defined" as 26.

#define AtoB_CMD 26+IPP

where IPP is a constant used to offset command values so that

these commands will not interfere with other programs that

could possibly be written to run on the system at the same

time. It should be noted that all command codes must be

unique. The next step is writing the driver C function that

will be called to issue the AtoB command. This function is

quite simply

#include "ipp.h"

AtoB(ip)
IPTYPE ip;

putcmd(ip,AtoBCND);

99

- - - - -- - -- - - --- -------

This program sends the command to the image processor

selected by the variable ip. Of course, the AtoB command

could be expanded to include any of the other calls defined

in the previous section.

Next, the AtoB file must be included in the makefile for

compilation. Type

man makefile

on the Sun for additional information. Once the "AtoB.o"

entry has been added to the makefile, type

make lib

This will produce a new ipplib.a file to replace the old

fipplib.a file. The host software modifications are now

complete.

The first step in modifying the node software is to add

the code that will interpret the AtoB command. In the file

node.f on the iPSC add a new "else if" clause to the Fortran

program.

else if (cmd .eq. 26) then
call AtoB(A,B)

Where AtoB is the Fortran program on the iPSC that actually

does the work. This program is in the file AtoB.f and is

100

subroutine AtoB(A,B)
include "ippcomm.h'

real A(MM,N), B(MM,N)

call scopy(2*L,A,1,B,1)

return
end

The file ippcomm.h is a file for the Fortran node programs

that defines the variables that relate to image size (MM, N,

and L). The scopy subroutine is an iPSC Vector Library call

documented in the iPSC Program Development Guide. Finally,

an entry for this new Fortran subroutine must be added to the

makefile on the iPSC. Once this is done type

make ippnode

and a new node program to replace the old ippnode file will

be generated.

Once these steps are accomplished, host programs can be

written using the new AtoB routine.

101

Bibliography

1. Almasi, George and Stephen Harvey. "An Introduction to
Parallel Processing," Journal of Electronic Defense, 9:
31-42 (May 1986)

2. Array Processing and Digital Signal Processing. Product
Information. Advanced Micro Devices, Sunnyvale, 1986.

3. Baer, Jean-Loup. Computer Systems Architecture.
Rockville, Maryland: Computer Science Press, 1980.

4. Booch, Grady. Software Engineering with Ada. Menlo
Park, California: The Benjamin/Cummings Publishing
Company, 1983.

5. Brigham, Oran E. The Fast Fourier Transform.
Englewood Cliffs, New Jersey: Prentice-Hall Inc.,
1974

6. Cooley, J.W. and J.W. Tukey. "An Algorithm for the
Machine Calculation of Complex Fourier Series,"
Mathematics of Computation, 19: 297-301 (April
1965).

7. De Fatta, Richard P. Target Recognition Using Three
Dimensional Laser Range Imagery, MS Thesis
AFIr/GEP/ENP/86D-2. School of Engineering, Air Force
Institute of Technology (AU), Wright-Patterson AFB OH,
December 1986 (AD-A177-755).

8. Fleury, Peter A. "Covert Penetration Systems: Future
Strategic Aircraft Missions Will Require a New Sensor
System Approach," Proceedings of NAECON 1:220-226 (May
1936).

9. Frederickson, Paul 0. (Computing and Communication
Division, Los Alamos National Laboratory). Scientific
Computation on Highly Parallel Supercomputers. Briefing
at the Massively Parallel Supercomputer Seminar in
Dayton Ohio, 22 July 1987.

10. Hall, Ernest L. Computer Image Processing and
Recognition. New York: Academic Press, 1979.

11. Harris, D.B. et al. "Vector Radix Fast Fourier
Transform," IEEE Internat. Conf. on Acoust.,
Speech, Signal Process. Rec.: 548-551 (1977).

102

iI

UVWX WX MR% W V[A.-, AI)K jr; :- IXUP Xy -.; Lq_ & V W - -11 r. -

[ii

12. Hollingum, Jack. Machine Vision: The Eyes of Automation.
Berlin: IFS (Publications) Ltd., 1984.

13. ITEX-100 Programmer's Manual. Part # 47-S10008-02.
Imaging Technology Inc. Woburn Massachusetts

14. Levine, Martin D. Vision in Man and Machine. New York:
McGraw-Hill Book Co., 1985.

15. Nussbaumer, H.J. Fast Fourier Transform and
Convolution Algorithms. New York: Springer-Velag,
1982.

16. Oppenheim, Alan V. and Ronald W. Schafer. Digital
Signal Processing. Englewood Cliffs, New Jersey:
Prentice-Hall Inc., 1975.

17. Palmer, J.F. "Hypercube Algoritms," Proceedings of the
1985 ASME International Computers in Engineering
Conference. Volume 3. The American Society of
Mechanical Engineers, New York, August 1985.

18. Pease, Marshall C. "An Adaptation of the Fast
Fourier Transform for Parallel Processing," Journal
of the Association for Computing Machinery, 15:
252-264 (April 1968).

19. Pratt, William K. Digital Image Processing. New York:
John Wiley & Sons, 1978.

20. Pressman, Roger S., Software Engineering: A
Practitioner's Approach. New York: McGraw-Hill Book
Co., 1982.

21. Quinn, Micheal J. Designing Efficient Algorithms
for Parallel Computers. New York: McGraw-Hill Book
Co., 1987.

22. Ratkovic, J.A. Structuring the Components of the Image
Matching Problem. Interim Report contract F49620-77-C-
0023, December 1979 (AD-A082-085).

23. Stanley, William D. "Fast Fourier Transforms on Your
Home Computer," Byte, 3: 14-25 (December 1978).
McGraw-Hill, 1985

24. Trussell, H. Joel. "Processing of X-ray Images,"
Proceedings of the IEEE, 69: 615-627 (May 1981).

25. Walton, Stephen R. "Fast Fourier Transforms on the
Hypercube," Presented at the Second Conference on
Hypercube Multiprocessors, 1986.

103

26. Whitten, Gary et al. "Temperature-driven Segmentation
for Autonomous Anit-tank Weapons," Proceedings of NAECON
1:186-196 (May 1986).

27. Wiley, Paul. "A Parallel Architecture Comes of Age at
Last," IEEE Spectrum, 24: 46-50 (June 1987).

28. Woolett, Jerry F. "MMWR/FLIR/ATR Fusion Proof of
Concept," Proceedings of NAECON 1:180-185 (flay 1986).

29. Ziemer, R.E. and W.H. Tranter. Principles of
Communications. Boston: Houghton Mifflin Co., 1976.

104

Additional References

Stremler, Ferrel G. Introduction to Communications
Systems. Reading, Massachusetts: Addison-Wesley Publishing
Co., 1982.

Kuck, David J. et al. High Speed Computer and Algorithm
Organization. New York: Academic Press, Inc., 1977.

Baase, Sara, Computer Algorithms: Introduction to
Design and Analysis. Reading, Massachusetts: Addison-
Wesley Publishing Co., 1978.

Blahut, Richard E., Fast Algorithms for Digital Signal
Processing. Reading, Massachusetts: Addison-Wesley
Publishing Co., 1985.

Ludeman, Lonnie C. Fundamentals of Digital Signal
Processing. New York: Harper & Row, 1986.

Bose, N.K. Digital Filters. New York: North-Holland, 1985.

The FPS T Series Parallel Supercomputer. Floating Point
Systems, Briefing at the Massively Parallel
Supercomputer Seminar in Dayton Ohio, 22 July 1987.

Rogstad, D.H. (Caltech/JPL). JPL dypercube Project.

Briefing at the Massively Parallel Supercomputer Seminar
in Dayton Ohio, 22 July 1987.

Directions in Scientific Computing. Floating Point
Systems, Briefing at the Massively Parallel Supercomputer
Seminar in Dayton Ohio, 22 July 1987.

George, Mike (Northrop Aircraft Division). Parallel
Processing and Computational Physics. Briefing at the
Massively Parallel Supercomputer Seminar in Dayton Ohio,
22 July 1987.

Lewis, Donald E. Two Dimensional Fast Fourier Transforms in
Image Processing. Technical Report AFAMRL-TR-84-006.
AMD, AFSC, Wright-Patterson AFB OH, January 1984 (AD-A139-
997).

Hicks, Robert C. Comparion of Arithmetic Requirements for

the PFA, WFTA, SWIFT, MFFT, FFT, and DFT Algorithms.
technical Report RE-93-6. U.S. Army Missle Command,
Redstone Arsenal, Alabama, November 1982.

105

Adam, John A. "Counting the Weapons," IEEE Spectrum, 23: 46-
56 (July 1986).

Schindler, Max. "Parallel Processing," Electronic Design,
35:91-100 (January 1987).

Callaghan, Tom. "Applications of Digital Signal Processing,"
Defense Science and Electronics, 4: 52-60.

Jain, Anil K. "Advances in Mathematical Models for
Image Processing," Proceedings of the IEEE, 69: 502-528
(May 1981).

Oppenheim, Alan V. Jae S. Lim. "The Importance of Phase
in Signals," Proceedings of the IEEE, 69: 529-541 (May 1981).

Barrow, Harry G. and Jay M. Tenebaum. "Computational
Vision," Proceedings of the IEEE, 69: 572-595 (May 1981).

Rosenfeld, Azriel. "Image Pattern Recognition," Proceedings
of the IEEE, 69: 596-614 (May 1981).

Landgrebe, David A. "Analysis Technology for Land
Remote Sensing," Proceedings of the IEEE, 69: 628-
642 (May 1981).

Woods, R.E. and R.C. Gonzalez. "Real-Time Digital Image
Enhancement," Proceedings of the IEEE, 69: 572-595
(May 1981).

Luetkemeyer, Kent. "Evaluation of Segmentation
Techniques Applied to Prescreened Areas of Multi-Sensor
Imagery," Proceedings of NAECON 1:197-204 (May 1986).

Woolfson, Martin G. "Classifier Integration with
Multiple Sensors," Proceedings of NAECON 1:205-209 (May
1986).

Kroupa, Richard F. and Bruce J. Schachter. "A1R
Development at Westinghouse," Proceedings of NAECON 1:210-214
(May 1986).

Gibson, Laurie and Dean Lucas. "Pyramid Algorithms for
Automated Target Recongnition," Proceedings of NAECON 1:215-
219 (May 1986).

Brass, A. et al. "Two and Three Dimensional FFrs on
Highly Parallel Computers," Parallel Computing, 3: 167-184
(1986).

McLachlan, Dan Jr. "The Role of Optics in Applying
Correlation Functions to Pattern Recognition," Journal of the
Optical Society of America, 52: 454-459 (April 1962).

106

Abu-Mostafa, Yaser S. and Demetri Psaltis. "Optical
Neural Computers," Scientific American, 256: 88-95 (March
1987).

Mueller, Philip T et al. "Parallel Algorithms for the Two-
Dimensional FF1," Proceedings of the Conference on Pattern
Recognition, 1: 497-502 (December 1980).

Blinchikoff, Herman J. and Anatol I. Zverev. Filtering in
the rime and Frequency Domains. New York: John Wiley
& Sons, 1976.

Fukunaga, Keinosuke. Introduction to Statistical Pattern
Recongnition. New York: Academic Press, 1972.

Bronson, Richard. Matrix Methds: An Introduction. New
York: Academic Press, 1970.

Taylor, Fred and Steve L. Smith. Digital Signal Processing
in FORTRAN. Lexington, Massachusetts: Lexington
Books, 1976.

Pavlidis, Theo. Algorithms for Graphics and Image
Processing. Rockville, Maryland: Computer Science
Press, 1982.

ZNorton, Alan and Allan J. Silberger. "Parallelization and
Performance Analysis of the Cooley-Tukey FFT Algorithm
for Shared-Memory Architectures," IEEE rransactions on
Computers, 36: 581-591 (May 1987).

Magee, Micheal J. et al. "Experiments in Intensity
Guided Range Sensing Recognition of Three-Dimensional
Objects," IEEE Transactions on Pattern Analysis and Machine
Intelligence, 7: 629-637 (November 1985).

Machuca, Raul and Alton L. Gilbert. "Finding Edges in
Noisy Scenes," IEEE Transactions on Pattern Analysis and
Machine Intelligence, 3: 103-111 (January 1981).

Berger, Marsha J. and Shahid H. Bokhari. "A
Partitioning Stategy for Nonuniform Problems on
Multiprocessors," IEEE rransactions on Computers, 5: 570-
579.

Preparata, Franco P. and Jean Vuillemin. "The Cube-
Connected-Cycles: A Versatile Network for Parallel
Computation," Joint Services Electronics Program
contract N00014-79-C-0424 (AD-085-846).

107

Therrien, Charles W. et al. "A Multiprocessor System
for Simulation of Multisensor Distributed Decision
Algorithms," Asilomar Conference on Circuits, Systems &
Computers. IEEE Computer Society, Washington, November 1985.

Ramanamurthy, D.V. et al. "Parallel Algorithms for Low
Level Vision on the Homogeneous Multiprocessor," Proceedings
of the Conference on Computer Vision and Pattern Recognition.
IEEE Computer Society, Washingon, June 1986.

Bhanu, Bir. "Automatic Target Recognition: State of the
Art Survey," IEEE Transactions on Aerospace and Electronic
Systems, 22: 364-379 (July 1986).

Duff, M.J.B. S. Levialdi (editors). Languages and

Architecutures for Image Processing. London: Academic
Press, 1981.

Mitra, Sanjit K. and Michael P. Ekstrom (editors). Two-
Dimensional Digital Signal Processing. Stroudsburg,
Pennsylvania: Halsted Press, 1978.

Onoe, Morio et al (editors). Real-Time/Parallel Computing:
Image Analysis. New York: Plenum Press, 1981.

Simon, J.C. and R.M. Haralick (editors). Digital Image
Processing. Boston: D. Reidel Publishing Co., 1981.

1

108 I

a-

VITA

Captain Billy R. Hodges was born on 5 October 1961 in

Roswell, New Mexico. He graduated from high school in

Memphis, Tennessee, in 1980 and attended Memphis State

University, from which he received the degree of Bachelor of

Science in Electrical Engineering in May 1983. Upon

graduation he entered Officer Training School where he

received a commission in the USAF. His first assignment,

at Aeronautical Systems Division, Wright-Patterson AFB, began

in September 1983. He served as an avionics engineer in

support of the Ground Collision Avoidance System program for

fighter aircraft until entering the School of Engineering,

Air Force Institute of Technology, in June 1986.

Permanent address:

3048 Ruffle Drive
Bartlett, TN 38134

N

109

'5

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

Fom Awroved
REPORT DOCUMENTATION PAGE OMBNo. 070-018

s. REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS
UNCLASSIFIED

Za. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT
Approved for public release;

Zb. DECLASSIFICATION /DOWNGRADING SCHEDULE distribution unlimi ted

4. PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)

AFIT/GE/ENG / 87D-2 5
6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION

(if applicable)

School of Engineering AFIT/ENG
6c. ADDRESS (City, State, and ZIPCode) 7b. ADDRESS (City, State, and ZIP Code)

Air Force Institute of Technology (AU)
Wright-Patterson AFB, OH 43433-6583

$a. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION ()f applicable)

Ic. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS
PROGRAM PROJECT TASK IWORK UNIT
ELEMENT NO. NO. NO ACCESSION NO.

11. TITLE (Include Security Classification)

IMAGE PROCESSING USING A PARALLEL ARCHITECTURE

12. PERSONAL AUTHOR(S)
Billy R. Hodges, Captain, USAF

13a. TYPE OF REPORT ft 13b. TIME COVERED T14. DATE OF REPORT (YearMontA y) 15. PAGE COUNT
MS Thesis FROM TO _ 1987 December 117

16. SUPPLEMENTARY NOTATION

17. COSATI CODES 1 . SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
FIELD GROUP SUB-GROUP mage Processing, Convolution.

12 09 Parallel Processing
12 05 Correlation

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

Title: IMAGE PROCESSING USING A PARALLEL ARCHITECTURE

Thesis Advisor: Walter D. Seward, Lt Col, USAF
Associate Professor of Electrical Engineering

b 1..

20. DISTRIBUTION/ AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION-- UNCLASS0FIEDUNUMTED CC SAME AS RPT , [0DTIC USERS UNCLASSIFIED
2a. NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE (Include Area Code) Z c OFFICE SYMBOL
Walter D. Seward, Lt Col, USAF 513-25-2024 AFIT EN ,

00 Form 1473. JUN M Pevious editionsare obsolete. SECURITY CLASSIFICATION OF THIS PAGE

UNC LA TIF I

This study developed a set of low level image processing
tools on a parallel computer that allows concurrent
processing of images in order to support development of
systems that use multiple images to gather information. The
parallel computer used is a collection of powerful processors
connected in a hypercube topology.

The software developed simplifies the interface between
the parallel computer and the applications developer by
providing a library of functions in the C programm' g
language. These functions are used to control "image
processor programs" that run independently in the parallel
computer and perform the image processing operations. The
complexities of the parallel processor are hidden and
replaced with a flexible structure specifically designed for
image processing. This structure provides a simplified
interface, but also acts as a framework to which additional
image processing operations can be added. A,.,.,

Timing measurements indicate that, in addition to
providing a unique applications development environment, the
set of tools offers a significant reduction in the time
required to perform some commonly used image processing
operations.

I7

-,U
1zV 1

Oki ad

.IA

-F

wc b

f/L1I1&J

w.K

